62,804 research outputs found

    Magnetotransport and magnetocrystalline anisotropy in Ga1-xMnxAs epilayers

    Get PDF
    We present an analysis of the magnetic anisotropy in epitaxial Ga1-xMnxAs thin films through electrical transport measurements on multiterminal microdevices. The film magnetization is manipulated in 3D space by a three-axis vector magnet. Anomalous switching patterns are observed in both longitudinal and transverse resistance data. In transverse geometry in particular we observe strong interplay between the anomalous Hall effect and the giant planar Hall effect. This allows direct electrical characterization of magnetic transitions in the 3D space. These transitions reflect a competition between cubic magnetic anisotropy and an effective out-of-plane uniaxial anisotropy, with a reversal mechanism that is distinct from the in-plane magnetization. The uniaxial anisotropy field is directly calculated with high precision and compared with theoretical predictions

    Hydrodynamic Analysis of Binary Immiscible Metallurgical Flow in a Novel Mixing Process: Rheomixing

    Get PDF
    This paper presents a hydrodynamic analysis of binary immiscible metallurgical flow by a numerical simulation of the rheomixing process. The concept of multi-controll is proposed for classifying complex processes and identifying individual processes in an immiscible alloy system in order to perform simulations. A brief review of fabrication methods for immiscible alloys is given, and fluid flow aspects of a novel fabrication method – rheomixing by twin-screw extruder (TSE) are analysed. Fundamental hydrodynamic micro-mechanisms in a TSE are simulated by a piecewise linear (PLIC) volume-of-fluid (VOF) method coupled with the continuum surface force (CFS) algorithm. This revealed that continuous reorientation in the TSE process could produce fine droplets and the best mixing efficiency. It is verified that TSE is a better mixing device than single screw extruder (SSE) and can achieve finer droplets. Numerical results show good qualitative agreement with experimental results. It is concluded that rheomixing by a TSE can be successfully employed for casting immiscible engineering alloys due to its unique characteristics of reorientation and surface renewal

    Numerical analysis of the hydrodynamic behaviour of immiscible metallic alloys in twin-screw rheomixing process

    Get PDF
    A numerical analysis by a VOF method is presented for studying the hydrodynamic mechanisms of the rheomixing process by a twin-screw extruder (TSE). The simplified flow field is established based on a systematic analysis of flow features of immiscible alloys in TSE rheomixing process. The studies focus on the fundamental microstructure mechanisms of rheological behaviour in shear-induced turbulent flows. It is noted that the microstructure of immiscible alloys in the mixing process is strongly influenced by the interaction between droplets, which is controlled by shearing forces, viscosity ratio, turbulence, and shearing time. The numerical results show a good qualitative agreement with the experimental results, and are useful for further optimisation design of prototypical rheomixing processes

    To synchronize or not to synchronize, that is the question: finite-size scaling and fluctuation effects in the Kuramoto model

    Full text link
    The entrainment transition of coupled random frequency oscillators presents a long-standing problem in nonlinear physics. The onset of entrainment in populations of large but finite size exhibits strong sensitivity to fluctuations in the oscillator density at the synchronizing frequency. This is the source for the unusual values assumed by the correlation size exponent ν\nu'. Locally coupled oscillators on a dd-dimensional lattice exhibit two types of frequency entrainment: symmetry-breaking at d>4d > 4, and aggregation of compact synchronized domains in three and four dimensions. Various critical properties of the transition are well captured by finite-size scaling relations with simple yet unconventional exponent values.Comment: 9 pages, 1 figure, to appear in a special issue of JSTAT dedicated to Statphys2

    Noise-assisted Mound Coarsening in Epitaxial Growth

    Full text link
    We propose deposition noise to be an important factor in unstable epitaxial growth of thin films. Our analysis yields a geometrical relation H=(RWL)^2 between the typical mound height W, mound size L, and the film thickness H. Simulations of realistic systems show that the parameter R is a characteristic of the growth conditions, and generally lies in the range 0.2-0.7. The constancy of R in late-stage coarsening yields a scaling relation between the coarsening exponent 1/z and the mound height exponent \beta which, in the case of saturated mound slope, gives \beta = 1/z = 1/4.Comment: 4 pages, RevTex Macros, 3 eps figure

    Power-Aware Speed Scaling in Processor Sharing Systems

    Get PDF
    Energy use of computer communication systems has quickly become a vital design consideration. One effective method for reducing energy consumption is dynamic speed scaling, which adapts the processing speed to the current load. This paper studies how to optimally scale speed to balance mean response time and mean energy consumption under processor sharing scheduling. Both bounds and asymptotics for the optimal speed scaling scheme are provided. These results show that a simple scheme that halts when the system is idle and uses a static rate while the system is busy provides nearly the same performance as the optimal dynamic speed scaling. However, the results also highlight that dynamic speed scaling provides at least one key benefit - significantly improved robustness to bursty traffic and mis-estimation of workload parameters

    Origin of the roughness exponent in elastic strings at the depinning threshold

    Full text link
    Within a recently developed framework of dynamical Monte Carlo algorithms, we compute the roughness exponent ζ\zeta of driven elastic strings at the depinning threshold in 1+1 dimensions for different functional forms of the (short-range) elastic energy. A purely harmonic elastic energy leads to an unphysical value for ζ\zeta. We include supplementary terms in the elastic energy of at least quartic order in the local extension. We then find a roughness exponent of ζ0.63\zeta \simeq 0.63, which coincides with the one obtained for different cellular automaton models of directed percolation depinning. The quartic term translates into a nonlinear piece which changes the roughness exponent in the corresponding continuum equation of motion. We discuss the implications of our analysis for higher-dimensional elastic manifolds in disordered media.Comment: 4 pages, 2 figure

    Stochastic Analysis of Power-Aware Scheduling

    Get PDF
    Energy consumption in a computer system can be reduced by dynamic speed scaling, which adapts the processing speed to the current load. This paper studies the optimal way to adjust speed to balance mean response time and mean energy consumption, when jobs arrive as a Poisson process and processor sharing scheduling is used. Both bounds and asymptotics for the optimal speeds are provided. Interestingly, a simple scheme that halts when the system is idle and uses a static rate while the system is busy provides nearly the same performance as the optimal dynamic speed scaling. However, dynamic speed scaling which allocates a higher speed when more jobs are present significantly improves robustness to bursty traffic and mis-estimation of workload parameters
    corecore