31 research outputs found

    A stable transcription factor complex nucleated by oligomeric AML1-ETO controls leukaemogenesis.

    Get PDF
    Transcription factors are frequently altered in leukaemia through chromosomal translocation, mutation or aberrant expression(1). AML1-ETO, a fusion protein generated by the t(8;21) translocation in acute myeloid leukaemia, is a transcription factor implicated in both gene repression and activation(2). AML1-ETO oligomerization, mediated by the NHR2 domain, is critical for leukaemogenesis(3-6), making it important to identify co-regulatory factors that 'read' the NHR2 oligomerization and contribute to leukaemogenesis(4). Here we show that, in human leukaemic cells, AML1-ETO resides in and functions through a stable AML1-ETO-containing transcription factor complex (AETFC) that contains several haematopoietic transcription (co)factors. These AETFC components stabilize the complex through multivalent interactions, provide multiple DNA-binding domains for diverse target genes, co-localize genome wide, cooperatively regulate gene expression, and contribute to leukaemogenesis. Within the AETFC complex, AML1-ETO oligomerization is required for a specific interaction between the oligomerized NHR2 domain and a novel NHR2-binding (N2B) motif in E proteins. Crystallographic analysis of the NHR2-N2B complex reveals a unique interaction pattern in which an N2B peptide makes direct contact with side chains of two NHR2 domains as a dimer, providing a novel model of how dimeric/oligomeric transcription factors create a new protein-binding interface through dimerization/oligomerization. Intriguingly, disruption of this interaction by point mutations abrogates AML1-ETO-induced haematopoietic stem/progenitor cell self-renewal and leukaemogenesis. These results reveal new mechanisms of action of AML1-ETO, and provide a potential therapeutic target in t(8;21)-positive acute myeloid leukaemia

    HTLV-I Tax directly binds the Cdc20-associated anaphase-promoting complex and activates it ahead of schedule

    No full text
    Expression of the human T lymphotropic virus type I (HTLV-I) transactivator/oncoprotein, Tax, leads to faulty mitosis as reflected by chromosome aneuploidy, cytokinesis failure, and formation of micro- and multinucleated cells. Here we show that HTLV-I-transformed T cells progress through S/G(2)/M phases of the cell cycle with a delay. This delay is correlated with a decrease in the levels of cyclin A, cyclin B1, and securin. In tax-expressing cells, the Cdc20-associated anaphase promoting complex (APC(Cdc20)), an E3 ubiquitin ligase that controls metaphase to anaphase transition, becomes active before cellular entry into mitosis as evidenced by premature cyclin B1 polyubiquitination and degradation during S/G(2). Consistent with the notion that Tax activates APC(Cdc20) directly, Tax is found to coimmunoprecipitate with Cdc20 and Cdc27/APC3. The APC(Cdc20) activity prematurely activated by Tax remains sensitive to spindle checkpoint inhibition. Unscheduled activation of APC(Cdc20) by Tax provides an explanation for the mitotic abnormalities in HTLV-I-infected cells and is likely to play an important role in the development of adult T cell leukemia

    Histone deacetylase 6 interference protects mice against experimental stroke-induced brain injury via activating Nrf2/HO-1 pathway

    No full text
    Cerebral stroke is a fatal disease with increasing incidence. The study was to investigate the role and mechanism of Histone deacetylase 6 (HDAC6) on experimental stroke-induced brain injury. The recombinant shRNA-HDAC6 or scramble shRNA lentivirus was transfected to ICR mice. Then, the ischemia/reperfusion injury (I/RI) mice were constructed using middle cerebral artery occlusion (MCAO) method. Brain TTC staining was used to determine infarct areas. Serum levels of oxidative stress-related factors were detected by enzyme linked immunosorbnent assay (ELISA). Realtime-qPCR (RT-qPCR) and Western blot were used to respectively detect mRNA and protein levels. HDAC6 was up-regulated in brain I/RI mice (MCAO group), and down-regulated again in MCAO mice transfected with shRNA-HDAC6 (MCAO + shRNA group). The infarct area of the MCAO mice was increased, neurological scores were higher, and serum protein levels of 3-NT, 4-HNE and 8-OHdG were higher. HDAC6 interference attenuated above effects. Though protein levels of Nrf2 and HO-1 in cytoplasm increased slightly in MCAO group, they increased significantly by HDAC6 interference. The protein levels of Nrf2 in cytoblast decreased significantly in MCAO group, and increased markedly by HDAC6 interference. HDAC6 interference protected mice against experimental stroke-induced brain injury via Nrf2/HO-1 pathway

    Preliminary findings on the expression of plasma CD63, CD62P, and PAI 1 in patients with acute cerebral infarction

    No full text
    To investigate the expression and clinical significance of lysosomal granule glycoprotein 63 (CD63), P-selectin (CD62P) and endothelial cell plasminogen activator inhibitor (PAI-1) in patients with acute cerebral infarction. A total of 106 patients with acute cerebral infarction (ACI) admitted to our hospital from January to July in 2017 were selected as the patient group; 80 healthy subjects for physical examination in our hospital were selected as the control group. The expression levels of serum CD63, CD62P, and PAI-1 of the subjects were detected. The levels of CD63, CD62P, and PAI-1 in the serum of the patient group were significantly higher than those in the control group. There was a positive correlation between serum CD63 and CD62P (r = 0.672, P  < 0.05) in the patient group. There was a positive correlation between serum CD63 and PAI-1 (r = 0.643, P  < 0.05) in the patient group. There was also a positive correlation between serum CD62P and PAI-1 (r = 0.601, P  < 0.05) in the patient group. Moreover, in other subtypes of cerebral infarction, the expression of CD63, CD62P, and PAI-1 was significantly higher than that of lacunar infarction. CD63, CD62P, and PAI-1 are highly expressed in peripheral blood mononuclear cells (PBMC) and serum of patients with ACI, which may be closely related to the occurrence and development of patients with ACI. These indices may be used as indicators of clinical diagnosis and prognosis in patients with ACI

    H3K4me3 interactions with TAF3 regulate preinitiation complex assembly and selective gene activation.

    Get PDF
    Histone modifications regulate chromatin-dependent processes, yet the mechanisms by which they contribute to specific outcomes remain unclear. H3K4me3 is a prominent histone mark that is associated with active genes and promotes transcription through interactions with effector proteins that include initiation factor TFIID. We demonstrate that H3K4me3-TAF3 interactions direct global TFIID recruitment to active genes, some of which are p53 targets. Further analyses show that (1) H3K4me3 enhances p53-dependent transcription by stimulating preinitiation complex (PIC) formation; (2) H3K4me3, through TAF3 interactions, can act either independently or cooperatively with the TATA box to direct PIC formation and transcription; and (3) H3K4me3-TAF3/TFIID interactions regulate gene-selective functions of p53 in response to genotoxic stress. Our findings indicate a mechanism by which H3K4me3 directs PIC assembly for the rapid induction of specific p53 target genes

    A stable transcription factor complex nucleated by oligomeric AML1-ETO controls leukaemogenesis.

    Get PDF
    Transcription factors are frequently altered in leukaemia through chromosomal translocation, mutation or aberrant expression(1). AML1-ETO, a fusion protein generated by the t(8;21) translocation in acute myeloid leukaemia (AML), is a transcription factor implicated in both gene repression and activation(2). AML1-ETO oligomerization, mediated by the NHR2 domain, is critical for leukaemogenesis(3–6), making it important to identify coregulatory factors that “read” the NHR2 oligomerization and contribute to leukaemogenesis(4). We now show that, in leukaemic cells, AML1-ETO resides in and functions through a stable protein complex (AETFC) that contains several haematopoietic transcription (co)factors. These AETFC components stabilize the complex through multivalent interactions, provide multiple DNA-binding domains for diverse target genes, colocalize genome-wide, cooperatively regulate gene expression, and contribute to leukaemogenesis. Within the AETFC complex, AML1-ETO oligomerization is required for a specific interaction between the oligomerized NHR2 domain and a novel NHR2-binding (N2B) motif in E proteins. Crystallographic analysis of the NHR2-N2B complex reveals a unique interaction pattern in which an N2B peptide makes direct contact with side chains of two NHR2 domains as a dimer, providing a novel model of how dimeric/oligomeric transcription factors create a new protein-binding interface through dimerization/oligomerization. Intriguingly, disruption of this interaction by point mutations abrogates AML1-ETO–induced haematopoietic stem/progenitor cell self-renewal and leukaemogenesis. These results reveal new mechanisms of action of AML1-ETO and a potential therapeutic target in t(8;21)(+) AML

    USF1 and hSET1A Mediated Epigenetic Modifications Regulate Lineage Differentiation and <i>HoxB4</i> Transcription

    Get PDF
    <div><p>The interplay between polycomb and trithorax complexes has been implicated in embryonic stem cell (ESC) self-renewal and differentiation. It has been shown recently that WRD5 and Dpy-30, specific components of the SET1/MLL protein complexes, play important roles during ESC self-renewal and differentiation of neural lineages. However, not much is known about how and where specific trithorax complexes are targeted to genes involved in self-renewal or lineage-specification. Here, we report that the recruitment of the hSET1A histone H3K4 methyltransferase (HMT) complex by transcription factor USF1 is required for mesoderm specification and lineage differentiation. In undifferentiated ESCs, USF1 maintains hematopoietic stem/progenitor cell (HS/PC) associated bivalent chromatin domains and differentiation potential. Furthermore, USF1 directed recruitment of the hSET1A complex to the <i>HoxB4</i> promoter governs the transcriptional activation of <i>HoxB4</i> gene and regulates the formation of early hematopoietic cell populations. Disruption of USF or hSET1A function by overexpression of a dominant-negative AUSF1 mutant or by RNA-interference-mediated knockdown, respectively, led to reduced expression of mesoderm markers and inhibition of lineage differentiation. We show that USF1 and hSET1A together regulate H3K4me3 modifications and transcription preinitiation complex assembly at the hematopoietic-associated <i>HoxB4</i> gene during differentiation. Finally, ectopic expression of USF1 in ESCs promotes mesoderm differentiation and enforces the endothelial-to-hematopoietic transition by inducing hematopoietic-associated transcription factors, <i>HoxB4</i> and <i>TAL1</i>. Taken together, our findings reveal that the guided-recruitment of the hSET1A histone methyltransferase complex and its H3K4 methyltransferase activity by transcription regulator USF1 safeguards hematopoietic transcription programs and enhances mesoderm/hematopoietic differentiation.</p></div
    corecore