96 research outputs found
Supercritical CO2 fracking for enhanced shale gas recovery and CO2 sequestration: Results, status and future challenges
 Supercritical carbon dioxide(ScCO2)-based fracturing technology associating with CO2 enhanced shale gas recovery is a promising technology to reduce the water consumption of shale gas production and could provide the potential for CO2 sequestration. Advancing the understanding of complex gas shale reservoir behavior in the presence ofmultiphase and multicomponent gases (ScCO2, gaseous CO2 and CH4 etc.) via laboratory experiments, theoretical model development and field validation studies is very important. In this paper, the progress of some key scientific problems such as the mechanism of ScCO2 drilling and completion, the ScCO2 fracturing technology, the competition adsorption behaviors of CO2/CH4 in shale, the coupled multiphase and multicomponent CO2/CH4 flow during the CO2 enhanced shale gas recovery process and the CO2 sequestration potential in shale formation were discussed. Finally, the challenges of the technique will face and the further research is needed in the future is also exposed.Cited as: Zhou, J., Hu, N., Xian, X., Zhou, L., Tang, J., Kang, Y., Wang, H. Supercritical CO2 fracking for enhanced shale gas recovery and CO2 sequestration: Results, status and future challenges. Advances in Geo-Energy Research, 2019, 3(2): 207-224, doi: 10.26804/ager.2019.02.1
Supercritical CO2 fracking for enhanced shale gas recovery and CO2 sequestration: results, status and future challenges
Supercritical carbon dioxide(ScCO2)-based fracturing technology associating with CO2 enhanced shale gas recovery is a promising technology to reduce the water consumption of shale gas production and could provide the potential for CO2 sequestration. Advancing the understanding of complex gas shale reservoir behavior in the presence ofmultiphase and multicomponent gases (ScCO2, gaseous CO2 and CH4 etc.) via laboratory experiments, theoretical model development and field validation studies is very important. In this paper, the progress of some key scientific problems such as the mechanism of SCCO2 drilling and completion, the ScCO2 fracturing technology, the competition adsorption behaviors of CO2/CH4 in shale, the coupled multiphase and multicomponent CO2/CH4 flow during the CO2 enhanced shale gas recovery process and the CO2 sequestration potential in shale formation were discussed. Finally, the challenges of the technique will face and the further research is needed in the future is also exposed
The Inhibition of Spinal Astrocytic JAK2-STAT3 Pathway Activation Correlates with the Analgesic Effects of Triptolide in the Rat Neuropathic Pain Model
Neuropathic pain (NP) is an intractable clinical problem without satisfactory treatments. However, certain natural products have been revealed as effective therapeutic agents for the management of pain states. In this study, we used the spinal nerve ligation (SNL) pain model to investigate the antinociceptive effect of triptolide (T10), a major active component of the traditional Chinese herb Tripterygium wilfordii Hook F. Intrathecal T10 inhibited the mechanical nociceptive response induced by SNL without interfering with motor performance. Additionally, the anti-nociceptive effect of T10 was associated with the inhibition of the activation of spinal astrocytes. Furthermore, intrathecal administration of T10 attenuated SNL-induced janus kinase (JAK) signal transducers and activators of transcription 3 (STAT3) signalling pathway activation and inhibited the upregulation of proinflammatory cytokines, such as interleukin-6, interleukin-1 beta, and tumour necrosis factor-α, in dorsal horn astrocytes. Moreover, NR2B-containing spinal N-methyl D-aspartate receptor (NMDAR) was subsequently inhibited. Above all, T10 can alleviate SNL-induced NP via inhibiting the neuroinflammation in the spinal dorsal horn. The anti-inflammation effect of T10 may be related with the suppression of spinal astrocytic JAK-STAT3 activation. Our results suggest that T10 may be a promising drug for the treatment of NP
CpG-binding protein CFP1 promotes ovarian cancer cell proliferation by regulating BST2 transcription
Epigenetic alterations have been functionally linked to ovarian cancer development and occurrence. The CXXC zinc finger protein 1 (CFP1) is an epigenetic regulator involved in DNA methylation and histone modification in mammalian cells. However, its role in ovarian cancer cells is unknown. Here, we show that CFP1 protein is highly expressed in human ovarian cancer tissues. Loss of CFP1 inhibited the growth of human ovarian cancer cells, promoted apoptosis, and increased senescence. CFP1 knockdown resulted in reduced levels of SETD1 (a CFP1 partner) and histone H3 trimethylation at the fourth lysine residue (H3K4me3). RNA-sequencing revealed that deletion of CFP1 resulted in mRNA reduction of bone marrow stromal cell antigen 2 (BST2). Bioinformatics analysis and chromatin immunoprecipitation showed that CFP1 binds to the promoter of BST2 and regulates its transcription directly. Overexpression of BST2 rescued the growth inhibitory effect of CFP1 loss. Furthermore, depletion of cullin-RING ubiquitin ligases 4 (CRL4) components ROC1 or CUL4A had significantly inhibited the expression of CFP1 and BST2 similar to MLN4924 treatment that blocked cullin neddylation and inactivated CRL4s. In conclusion, CFP1 promotes ovarian cancer cell proliferation and apoptosis by regulating the transcription of BST2, and the expression of CFP1 was affected by CRL4 ubiquitin ligase complex
Recommended from our members
Joint analysis of three genome-wide association studies of esophageal squamous cell carcinoma in Chinese populations
We conducted a joint (pooled) analysis of three genome-wide association studies (GWAS) 1-3 of esophageal squamous cell carcinoma (ESCC) in ethnic Chinese (5,337 ESCC cases and 5,787 controls) with 9,654 ESCC cases and 10,058 controls for follow-up. In a logistic regression model adjusted for age, sex, study, and two eigenvectors, two new loci achieved genome-wide significance, marked by rs7447927 at 5q31.2 (per-allele odds ratio (OR) = 0.85, 95% CI 0.82-0.88; P=7.72x10−20) and rs1642764 at 17p13.1 (per-allele OR= 0.88, 95% CI 0.85-0.91; P=3.10x10−13). rs7447927 is a synonymous single nucleotide polymorphism (SNP) in TMEM173 and rs1642764 is an intronic SNP in ATP1B2, near TP53. Furthermore, a locus in the HLA class II region at 6p21.32 (rs35597309) achieved genome-wide significance in the two populations at highest risk for ESSC (OR=1.33, 95% CI 1.22-1.46; P=1.99x10−10). Our joint analysis identified new ESCC susceptibility loci overall as well as a new locus unique to the ESCC high risk Taihang Mountain region
Mild Hypothermia Reduces Tissue Plasminogen Activator-Related Hemorrhage and Blood Brain Barrier Disruption After Experimental Stroke
Therapeutic hypothermia has shown neuroprotective promise, but whether it can be used to improve outcome in stroke has yet to be determined in patients. Recombinant tissue plasminogen activator (rt-PA) is only given to a minority of patients with acute ischemic stroke, and is not without risk, namely significant brain hemorrhage. We explored whether mild hypothermia, in combination with rt-PA, influences the safety of rt-PA. Mice were subjected to middle cerebral artery occlusion (MCAO) using a filament model, followed by 24 hours reperfusion. Two paradigms were studied. In the first paradigm, cooling and rt-PA treatment began at the same time upon reperfusion, whereas in the second paradigm, cooling began soon after ischemia onset, and rt-PA began after re-warming and upon reperfusion. Experimental groups included: tPA treatment at normothermia (37°C), rt-PA treatment at hypothermia (33°C), no rt-PA at normothermia, and no rt-PA treatment at hypothermia. Infarct size, neurological deficit scores, blood brain barrier (BBB) permeability, brain hemorrhage, and expression of endogenous tissue plasminogen activator (tPA) and its inhibitor, plasminogen activator inhibitor (PAI-1) were assessed. For both paradigms, hypothermia reduced infarct size and neurological deficits compared to normothermia, regardless of whether rt-PA was given. rt-PA treatment increased brain hemorrhage and BBB disruption compared to normothermia, and this was prevented by cooling. However, mortality was higher when rt-PA and cooling were administered at the same time, beginning 1–2 hours post MCAO. Endogenous tPA expression was reduced in hypothermic mice, whereas PAI-1 levels were unchanged by cooling. In the setting of rt-PA treatment, hypothermia reduces brain hemorrhage, and BBB disruption, suggesting that combination therapy with mild hypothermia and rt-PA appears safe
- …