61,881 research outputs found

    Observational and theoretical studies of the evolving structure of baroclinic waves

    Get PDF
    Dynamical processes involved in comma cloud formation, and passive tracer evolution in a baroclinic wave are discussed. An analytical solution was obtained demonstrating the complex nongeostrophic flow pattern involved in the redistribution of low level constituents in a finite amplitude baroclinic wave, and in the formation of the typical humidity and cloud distributions in such a wave. Observational and theoretical studies of blocking weather patterns in middle latitude flows were studied. The differences in the energy and enstrophy cascades in blocking and nonblocking situations were shown. It was established that pronounced upscale flow of both of these quantities, from intermediate to planetary scales, occurs during blocking episodes. The upscale flux of enstrophy, in particular, suggests that the persistence of blocking periods may be due to reduced dissipation of the large scale circulation and therefore entail some above normal predictability

    NASA ground terminal communication equipment automated fault isolation expert systems

    Get PDF
    The prototype expert systems are described that diagnose the Distribution and Switching System I and II (DSS1 and DSS2), Statistical Multiplexers (SM), and Multiplexer and Demultiplexer systems (MDM) at the NASA Ground Terminal (NGT). A system level fault isolation expert system monitors the activities of a selected data stream, verifies that the fault exists in the NGT and identifies the faulty equipment. Equipment level fault isolation expert systems are invoked to isolate the fault to a Line Replaceable Unit (LRU) level. Input and sometimes output data stream activities for the equipment are available. The system level fault isolation expert system compares the equipment input and output status for a data stream and performs loopback tests (if necessary) to isolate the faulty equipment. The equipment level fault isolation system utilizes the process of elimination and/or the maintenance personnel's fault isolation experience stored in its knowledge base. The DSS1, DSS2 and SM fault isolation systems, using the knowledge of the current equipment configuration and the equipment circuitry issues a set of test connections according to the predefined rules. The faulty component or board can be identified by the expert system by analyzing the test results. The MDM fault isolation system correlates the failure symptoms with the faulty component based on maintenance personnel experience. The faulty component can be determined by knowing the failure symptoms. The DSS1, DSS2, SM, and MDM equipment simulators are implemented in PASCAL. The DSS1 fault isolation expert system was converted to C language from VP-Expert and integrated into the NGT automation software for offline switch diagnoses. Potentially, the NGT fault isolation algorithms can be used for the DSS1, SM, amd MDM located at Goddard Space Flight Center (GSFC)

    A new and flexible method for constructing designs for computer experiments

    Full text link
    We develop a new method for constructing "good" designs for computer experiments. The method derives its power from its basic structure that builds large designs using small designs. We specialize the method for the construction of orthogonal Latin hypercubes and obtain many results along the way. In terms of run sizes, the existence problem of orthogonal Latin hypercubes is completely solved. We also present an explicit result showing how large orthogonal Latin hypercubes can be constructed using small orthogonal Latin hypercubes. Another appealing feature of our method is that it can easily be adapted to construct other designs; we examine how to make use of the method to construct nearly orthogonal and cascading Latin hypercubes.Comment: Published in at http://dx.doi.org/10.1214/09-AOS757 the Annals of Statistics (http://www.imstat.org/aos/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Stress Concentration Around Knots in Laminated Beams

    Get PDF
    A formal elastic solution of the stresses and displacements occurring in a laminated beam, with an arbitrarily located elliptic or circular knot, subjected to static bending is presented. The solutions are obtained by using the theory of complex variables in plane elasticity. Numerical examples of the stress concentration are illustrated with graphs in which comparisons are made between the cases of sound knot, decayed knot, knothole, and wooden plug. The effects of size, shape, location, orientation, and material property of the knot on the stress concentrations are discussed

    Properties of Resonating-Valence-Bond Spin Liquids and Critical Dimer Models

    Full text link
    We use Monte Carlo simulations to study properties of Anderson's resonating-valence-bond (RVB) spin-liquid state on the square lattice (i.e., the equal superposition of all pairing of spins into nearest-neighbor singlet pairs) and compare with the classical dimer model (CDM). The latter system also corresponds to the ground state of the Rokhsar-Kivelson quantum dimer model at its critical point. We find that although spin-spin correlations decay exponentially in the RVB, four-spin valence-bond-solid (VBS) correlations are critical, qualitatively like the well-known dimer-dimer correlations of the CDM, but decaying more slowly (as 1/ra1/r^a with a1.20a \approx 1.20, compared with a=2a=2 for the CDM). We also compute the distribution of monomer (defect) pair separations, which decay by a larger exponent in the RVB than in the CDM. We further study both models in their different winding number sectors and evaluate the relative weights of different sectors. Like the CDM, all the observed RVB behaviors can be understood in the framework of a mapping to a "height" model characterized by a gradient-squared stiffness constant KK. Four independent measurements consistently show a value KRVB1.6KCDMK_{RVB} \approx 1.6 K_{CDM}, with the same kinds of numerical evaluations of KCDMK_{CDM} give results in agreement with the rigorously known value KCDM=π/16K_{CDM}=\pi/16. The background of a nonzero winding number gradient W/LW/L introduces spatial anisotropies and an increase in the effective K, both of which can be understood as a consequence of anharmonic terms in the height-model free energy, which are of relevance to the recently proposed scenario of "Cantor deconfinement" in extended quantum dimer models. We also study ensembles in which fourth-neighbor (bipartite) bonds are allowed, at a density controlled by a tunable fugacity, resulting (as expected) in a smooth reduction of K.Comment: 26 pages, 21 figures. v3: final versio

    Temperature Effects on Threshold Counterion Concentration to Induce Aggregation of fd Virus

    Full text link
    We seek to determine the mechanism of like-charge attraction by measuring the temperature dependence of critical divalent counterion concentration (Cc\rm{C_{c}}) for the aggregation of fd viruses. We find that an increase in temperature causes Cc\rm{C_c} to decrease, primarily due to a decrease in the dielectric constant (ϵ\epsilon) of the solvent. At a constant ϵ\epsilon, Cc\rm{C_c} is found to increase as the temperature increases. The effects of TT and ϵ\epsilon on Cc\rm {C_{c}} can be combined to that of one parameter: Bjerrum length (lBl_{B}). Cc\rm{C_{c}} decreases exponentially as lBl_{B} increases, suggesting that entropic effect of counterions plays an important role at the onset of bundle formation.Comment: 12 pages, 3 figure

    Geometry dependence of the clogging transition in tilted hoppers

    Get PDF
    We report the effect of system geometry on the clogging of granular material flowing out of flat-bottomed hoppers with variable aperture size D. For such systems, there exists a critical aperture size Dc at which there is a divergence in the time for a flow to clog. To better understand the origins of Dc, we perturb the system by tilting the hopper an angle Q and mapping out a clogging phase diagram as a function of Q and D. The clogging transition demarcates the boundary between the freely-flowing (large D, small Q) and clogging (small D, large Q) regimes. We investigate how the system geometry affects Dc by mapping out this phase diagram for hoppers with either a circular hole or a rectangular narrow slit. Additionally, we vary the grain shape, investigating smooth spheres (glass beads), compact angular grains (beach sand), disk-like grains (lentils), and rod-like grains (rice). We find that the value of Dc grows with increasing Q, diverging at pi-Qr where Qr is the angle of repose. For circular apertures, the shape of the clogging transition is the same for all grain types. However, this is not the case for the narrow slit apertures, where the rate of growth of the critical hole size with tilt angle depends on the material

    Diving Deep into Sentiment: Understanding Fine-tuned CNNs for Visual Sentiment Prediction

    Get PDF
    Visual media are powerful means of expressing emotions and sentiments. The constant generation of new content in social networks highlights the need of automated visual sentiment analysis tools. While Convolutional Neural Networks (CNNs) have established a new state-of-the-art in several vision problems, their application to the task of sentiment analysis is mostly unexplored and there are few studies regarding how to design CNNs for this purpose. In this work, we study the suitability of fine-tuning a CNN for visual sentiment prediction as well as explore performance boosting techniques within this deep learning setting. Finally, we provide a deep-dive analysis into a benchmark, state-of-the-art network architecture to gain insight about how to design patterns for CNNs on the task of visual sentiment prediction.Comment: Preprint of the paper accepted at the 1st Workshop on Affect and Sentiment in Multimedia (ASM), in ACM MultiMedia 2015. Brisbane, Australi
    corecore