265 research outputs found

    Rational solutions of the discrete time Toda lattice and the alternate discrete Painleve II equation

    Get PDF
    The Yablonskii-Vorob'ev polynomials yn(t)y_{n}(t), which are defined by a second order bilinear differential-difference equation, provide rational solutions of the Toda lattice. They are also polynomial tau-functions for the rational solutions of the second Painlev\'{e} equation (PIIP_{II}). Here we define two-variable polynomials Yn(t,h)Y_{n}(t,h) on a lattice with spacing hh, by considering rational solutions of the discrete time Toda lattice as introduced by Suris. These polynomials are shown to have many properties that are analogous to those of the Yablonskii-Vorob'ev polynomials, to which they reduce when h=0h=0. They also provide rational solutions for a particular discretisation of PIIP_{II}, namely the so called {\it alternate discrete} PIIP_{II}, and this connection leads to an expression in terms of the Umemura polynomials for the third Painlev\'{e} equation (PIIIP_{III}). It is shown that B\"{a}cklund transformation for the alternate discrete Painlev\'{e} equation is a symplectic map, and the shift in time is also symplectic. Finally we present a Lax pair for the alternate discrete PIIP_{II}, which recovers Jimbo and Miwa's Lax pair for PIIP_{II} in the continuum limit h0h\to 0.Comment: 23 pages, IOP style. Title changed, and connection with Umemura polynomials adde

    Development of High Ic Long REBCO Tapes with High Production Rate by PLD Method

    Get PDF
    AbstractWe have been developing long REBa2Cu3O7-δ coated conductors with high performance by the combination of the IBAD and the PLD methods. To realize the low production cost for REBa2Cu3O7-δ coated conductors, growth conditions were optimized for long tape fabrication in the “in-plume PLD method”. As a result, the Ic performance was confirmed with a high production rate under the high oxygen gas pressure and high laser energy density of > 800 mTorr and > 3J/cm2, respectively. We successfully fabricated a 35 m long GdBa2Cu3O7-δ coated conductor with high Ic value of 619 A/cm-w by the production rate of 30 m/h

    Histological heterogeneity of glomerular segmental lesions in focal segmental glomerulosclerosis

    Get PDF
    Focal segmental glomerulosclerosis (FSGS) involves considerable histological heterogeneity in terms of location and quality of the glomerular segmental lesions. The present study investigated the heterogeneity of segmental lesions in each variant of FSGS, determined by the Columbia classification, and its clinical relevance. All glomerular segmental lesions of 80 cases of primary FSGS were evaluated histologically based on location [tip (TIP), perihilar (PH), or not otherwise specified (NOS)], and quality (cellular or fibrous). Among the 1,299 glomeruli of the 80 biopsy specimens, 210 glomeruli (16.2%) had segmental lesions, comprising 57 (27%) cellular TIP, 4 (2%) fibrous TIP, 42 (20%) cellular NOS, 86 (41%) fibrous NOS, and 21 (10%) fibrous PH lesions. Each case was also classified into one of the five histological variants of the Columbia classification: collapsing (COL), TIP, cellular (CEL), PH, or NOS. Overlap of segmental lesions in different location categories was seen in the COL, TIP, and PH variants, and heterogeneity of quality was apparent in the COL and CEL variants. Histological findings of the CEL variant (endocapillary hypercellularity) were observed in nine of the 13 COL variants. Both location and quality correlated with disease duration, degree of proteinuria, and histological severity of global glomerular sclerosis and tubulo-interstitial lesions. These results demonstrated the histological heterogeneity of glomerular segmental lesions in all variants of the Columbia classification, except NOS. However, the fidelity of location and dominance of histological features were generally conserved in the TIP and PH variants. The COL and CEL variants warrant further investigation because of their overlapping histological findings and apparent histological heterogeneity in the glomerular segmental lesions

    Creating drag and lift curves from soccer trajectories

    Get PDF
    Trajectory analysis is an alternative to using wind tunnels to measure a soccer balls aerodynamic properties. It has advantages over wind tunnel testing such as being more representative of game play. However, previous work has not presented a method that produces complete, speed -dependent drag and lift coefficients. Four high-speed cameras in stereo-calibrated pairs were used to measure the spatial co-ordinates for 29 separate soccer trajectories. Those trajectories span a range of launch speeds from 9.3 m/s to 29.9 m/s. That range encompasses low-speed laminar flow of air over a soccer ball, through the drag crises where air flow is both laminar and turbulent, and up to high-speed turbulent air flow. Results from trajectory analysis were combined to give speed-dependent drag and lift coefficient curves for the entire range of speeds found in the 29 trajectories. Average root mean square error between measured and modelled trajectory was 0.028 m horizontally and 0.034 m vertically. The drag and lift crises can be observed in the plots of drag and lift coefficients respectively

    An efficient genetic algorithm for structural RNA pairwise alignment and its application to non-coding RNA discovery in yeast

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Aligning RNA sequences with low sequence identity has been a challenging problem since such a computation essentially needs an algorithm with high complexities for taking structural conservation into account. Although many sophisticated algorithms for the purpose have been proposed to date, further improvement in efficiency is necessary to accelerate its large-scale applications including non-coding RNA (ncRNA) discovery.</p> <p>Results</p> <p>We developed a new genetic algorithm, Cofolga2, for simultaneously computing pairwise RNA sequence alignment and consensus folding, and benchmarked it using BRAliBase 2.1. The benchmark results showed that our new algorithm is accurate and efficient in both time and memory usage. Then, combining with the originally trained SVM, we applied the new algorithm to novel ncRNA discovery where we compared <it>S. cerevisiae </it>genome with six related genomes in a pairwise manner. By focusing our search to the relatively short regions (50 bp to 2,000 bp) sandwiched by conserved sequences, we successfully predict 714 intergenic and 1,311 sense or antisense ncRNA candidates, which were found in the pairwise alignments with stable consensus secondary structure and low sequence identity (≤ 50%). By comparing with the previous predictions, we found that > 92% of the candidates is novel candidates. The estimated rate of false positives in the predicted candidates is 51%. Twenty-five percent of the intergenic candidates has supports for expression in cell, i.e. their genomic positions overlap those of the experimentally determined transcripts in literature. By manual inspection of the results, moreover, we obtained four multiple alignments with low sequence identity which reveal consensus structures shared by three species/sequences.</p> <p>Conclusion</p> <p>The present method gives an efficient tool complementary to sequence-alignment-based ncRNA finders.</p

    Association between winter anthocyanin production and drought stress in angiosperm evergreen species

    Get PDF
    Leaves of many evergreen angiosperm species turn red under high light during winter due to the production of anthocyanin pigments, while leaves of other species remain green. There is currently no explanation for why some evergreen species exhibit winter reddening while others do not. Conditions associated with low leaf water potentials (Ψ) have been shown to induce reddening in many plant species. Because evergreen species differ in susceptibility to water stress during winter, it is hypothesized that species which undergo winter colour change correspond with those that experience/tolerate the most severe daily declines in leaf Ψ during winter. Six angiosperm evergreen species which synthesize anthocyanin in leaves under high light during winter and five species which do not were studied. Field Ψ, pressure/volume curves, and gas exchange measurements were derived in summer (before leaf colour change had occurred) and winter. Consistent with the hypothesis, red-leafed species as a group had significantly lower midday Ψ in winter than green-leafed species, but not during the summer when all the leaves were green. However, some red-leafed species showed midday declines similar to those of green-leafed species, suggesting that low Ψ alone may not induce reddening. Pressure–volume curves also provided some evidence of acclimation to more negative water potentials by red-leafed species during winter (e.g. greater osmotic adjustment and cell wall hardening on average). However, much overlap in these physiological parameters was observed as well between red and green-leafed species, and some of the least drought-acclimated species were red-leafed. No difference was observed in transpiration (E) during winter between red and green-leaved species. When data were combined, only three of the six red-leafed species examined appeared physiologically acclimated to prolonged drought stress, compared to one of the five green-leafed species. This suggests that drought stress alone is not sufficient to explain winter reddening in evergreen angiosperms

    Increased Prothrombin, Apolipoprotein A-IV, and Haptoglobin in the Cerebrospinal Fluid of Patients with Huntington's Disease

    Get PDF
    Huntington's disease (HD) is a progressive neurodegenerative disease caused by an unstable CAG trinucleotide repeat expansion. The need for biomarkers of onset and progression in HD is imperative, since currently reliable outcome measures are lacking. We used two-dimensional electrophoresis and mass spectrometry to analyze the proteome profiles in cerebrospinal fluid (CSF) of 6 pairs of HD patients and controls. Prothrombin, apolipoprotein A-IV (Apo A-IV) and haptoglobin were elevated in CSF of the HD patients in comparison with the controls. We used western blot as a semi-quantified measurement for prothrombin and Apo A-IV, as well as enzyme linked immunosorbent assay (ELISA) for measurement of haptoglobin, in 9 HD patients and 9 controls. The albumin quotient (Qalb), a marker of blood-brain barrier (BBB) function, was not different between the HD patients and the controls. The ratios of CSF prothrombin/albumin (prothrombin/Alb) and Apo A-IV/albumin (Apo A-IV/Alb), and haptoglobin level were significantly elevated in HD. The ratio of CSF prothrombin/Alb significantly correlated with the disease severity assessed by Unified Huntington's Disease Rating Scale (UHDRS). The results implicate that increased CSF prothrombin, Apo A-IV, and haptoglobin may be involved in pathogenesis of HD and may serve as potential biomarkers for HD
    corecore