2 research outputs found
The thalamus and its subnuclei—a gateway to obsessive-compulsive disorder
Larger thalamic volume has been found in children with obsessive-compulsive disorder (OCD) and children with clinical-level symptoms within the general population. Particular thalamic subregions may drive these differences. The ENIGMA-OCD working group conducted mega- and meta-analyses to study thalamic subregional volume in OCD across the lifespan. Structural T-1-weighted brain magnetic resonance imaging (MRI) scans from 2649 OCD patients and 2774 healthy controls across 29 sites (50 datasets) were processed using the FreeSurfer built-in ThalamicNuclei pipeline to extract five thalamic subregions. Volume measures were harmonized for site effects using ComBat before running separate multiple linear regression models for children, adolescents, and adults to estimate volumetric group differences. All analyses were pre-registered (https://osf.io/73dvy) and adjusted for age, sex and intracranial volume. Unmedicated pediatric OCD patients (<12 years) had larger lateral (d = 0.46), pulvinar (d = 0.33), ventral (d = 0.35) and whole thalamus (d = 0.40) volumes at unadjusted p-values <0.05. Adolescent patients showed no volumetric differences. Adult OCD patients compared with controls had smaller volumes across all subregions (anterior, lateral, pulvinar, medial, and ventral) and smaller whole thalamic volume (d = -0.15 to -0.07) after multiple comparisons correction, mostly driven by medicated patients and associated with symptom severity. The anterior thalamus was also significantly smaller in patients after adjusting for thalamus size. Our results suggest that OCD-related thalamic volume differences are global and not driven by particular subregions and that the direction of effects are driven by both age and medication status
Using supervised machine learning on neuropsychological data to distinguish OCD patients with and without sensory phenomena from healthy controls
While theoretical models link obsessive-compulsive disorder (OCD) with executive function deficits, empirical findings from the neuropsychological literature remain mixed. These inconsistencies are likely exacerbated by the challenge of high-dimensional data (i.e., many variables per subject), which is common across neuropsychological paradigms and necessitates analytical advances. More unique to OCD is the heterogeneity of symptom presentations, each of which may relate to distinct neuropsychological features. While researchers have traditionally attempted to account for this heterogeneity using a symptom-based approach, an alternative involves focusing on underlying symptom motivations. Although the most studied symptom motivation involves fear of harmful events, 60-70% of patients also experience sensory phenomena, consisting of uncomfortable sensations or perceptions that drive compulsions. Sensory phenomena have received limited attention in the neuropsychological literature, despite evidence that symptoms motivated by these experiences may relate to distinct cognitive processes.
Here, we used a supervised machine learning approach to characterize neuropsychological processes in OCD, accounting for sensory phenomena.
Compared to logistic regression and other algorithms, random forest best differentiated healthy controls (n = 59; balanced accuracy = .70), patients with sensory phenomena (n = 29; balanced accuracy = .59), and patients without sensory phenomena (n = 46; balanced accuracy = .62). Decision-making best distinguished between groups based on sensory phenomena, and among the patient subsample, those without sensory phenomena uniquely displayed greater risk sensitivity compared to healthy controls (d = .07, p = .008).
Results suggest that different cognitive profiles may characterize patients motivated by distinct drives. The superior performance and generalizability of the newer algorithms highlights the utility of considering multiple analytic approaches when faced with complex data.
Practitioners should be aware that sensory phenomena are common experiences among patients with OCD. OCD patients with sensory phenomena may be distinguished from those without based on neuropsychological processes