535 research outputs found

    From bound states to resonances: analytic continuation of the wave function

    Get PDF
    Single-particle resonance parameters and wave functions in spherical and deformed nuclei are determined through analytic continuation in the potential strength. In this method, the analyticity of the eigenvalues and eigenfunctions of the Schroedinger equation with respect to the coupling strength is exploited to analytically continue the bound-state solutions into the positive-energy region by means of Pade' approximants of the second kind. The method is here applied to single-particle wave functions of the 154Sm^{154}Sm and 131Eu^{131}Eu nuclei. A comparison of the results with the direct solution of the Schroedinger equation shows that the method can be confidently applied also in coupled-channel situations requiring high numerical accuracy.Comment: 13 pages, 3 figure

    Effect of Ordering on Spinodal Decomposition of Liquid-Crystal/Polymer Mixtures

    Full text link
    Partially phase-separated liquid-crystal/polymer dispersions display highly fibrillar domain morphologies that are dramatically different from the typical structures found in isotropic mixtures. To explain this, we numerically explore the coupling between phase ordering and phase separation kinetics in model two-dimensional fluid mixtures phase separating into a nematic phase, rich in liquid crystal, coexisting with an isotropic phase, rich in polymer. We find that phase ordering can lead to fibrillar networks of the minority polymer-rich phase

    Precise measurement on the binding energy of hypertriton from the nuclear emulsion data using analysis with machine learning

    Get PDF
    6 pags., 3 figs.A machine learning model has been developed to search for events of production and decay of a hypertriton in nuclear emulsion data, which is used for measuring the binding energy of the hypertriton at the best precision. The developed model employs an established technique for object detection and is trained with surrogate images generated by Monte Carlo simulations and image transfer techniques. The first hypertriton event has already been detected with the developed method only with 10−4 of the total emulsion data. It implies that a sufficient number of hypertriton events will soon be detected for the precise measurement of the hypertriton binding energy

    Resonances in the three-neutron system

    Full text link
    A study of 3-body resonances has been performed in the framework of configuration space Faddeev equations. The importance of keeping a sufficient number of terms in the asymptotic expansion of the resonance wave function is pointed out. We investigated three neutrons interacting in selected force components taken from realistic nn forces.Comment: 38 pages, 11 tables, 4 figure

    Unique approach for precise determination of binding energies of hypernuclei with nuclear emulsion and machine learning

    Get PDF
    4 pags., 1 tab. -- HYP2022 - 14th International Conference on Hypernuclear and Strange Particle PhysicsHypertriton is the lightest hypernucleus and a benchmark in hypernuclear physics. However, it has recently been suggested that its lifetime and binding energy values may differ from the established values. To solve this puzzle, it is necessary to measure both values with a higher precision. For the precise measurement of the binding energy, we are aiming at developing a novel technique to measure the hypertriton binding energy with unprecedented accuracy by combining nuclear emulsion data and machine learning techniques. The analysis will be based on the J-PARC E07 nuclear emulsion data. Furthermore, a machine-learning model is being developed to identify other single and double-strangeness hypernucle

    Search for the Electric Dipole Moment of the tau Lepton

    Get PDF
    We have searched for a CP violation signature arising from an electric dipole moment (d_tau) of the tau lepton in the e+e- -> tau+tau- reaction. Using an optimal observable method and 29.5 fb^{-1} of data collected with the Belle detector at the KEKB collider at sqrt{s} = 10.58 GeV, we find Re(d_tau) = (1.15 +- 1.70) x 10^{-17} ecm and Im(d_tau) = (-0.83 +- 0.86) x 10^{-17} ecm and set the 95% confidence level limits -2.2 < Re(d_tau) < 4.5 (10^{-17}ecm) and -2.5 < Im(d_tau) < 0.8 (10^{-17}ecm).Comment: 15 pages, LaTeX, 21 figures, submitted to Phys. Lett.

    The density and biomass of mesozooplankton and ichthyoplankton in the Negro and the Amazon Rivers during the rainy season: The ecological importance of the confluence boundary

    Get PDF
    The boundary zone between two different hydrological regimes is often a biologically enriched environment with distinct planktonic communities. In the center of the Amazon River basin, muddy white water of the Amazon River meets with black water of the Negro River, creating a conspicuous visible boundary spanning over 10kmalong the Amazon River. Here, we tested the hypothesis that the confluence boundary between the white and black water rivers concentrates prey and is used as a feeding habitat for consumers by investigating the density, biomass and distribution of mesozooplankton and ichthyoplankton communities across the two rivers during the rainy season. Our results show that mean mesozooplankton density (2,730 inds. m-3) and biomass (4.8 mg m-33) were higher in the black-water river compared to the white-water river (959 inds. m-33; 2.4 mg m-33); however an exceptionally high mesozooplankton density was not observed in the confluence boundary. Nonetheless we found the highest density of ichthyoplankton in the confluence boundary (9.7 inds. m-3), being up to 9-fold higher than in adjacent rivers. The confluence between white and black waters is sandwiched by both environments with low (white water) and high (black water) zooplankton concentrations and by both environments with low (white water) and high (black water) predation pressures for fish larvae, and may function as a boundary layer that offers benefits of both high prey concentrations and low predation risk. This forms a plausible explanation for the high density of ichthyoplankton in the confluence zone of black and white water rivers. © 2017 Nakajima et al

    Search for Resonant B±→K±h→K±γγB^{\pm}\to K^{\pm} h \to K^{\pm} \gamma \gamma Decays at Belle

    Get PDF
    We report measurements and searches for resonant B±→K±h→K±γγB^{\pm} \to K^{\pm} h \to K^{\pm} \gamma \gamma decays where hh is a η,ηâ€Č,ηc,ηc(2S),χc0,χc2,J/ψ\eta,\eta^{\prime},\eta_{c},\eta_{c}(2S),\chi_{c0},\chi_{c2},J/\psi meson or the X(3872) particle.Comment: accepted by Physics Letters

    Study of charmonia in four-meson final states produced in two-photon collisions

    Get PDF
    We report measurements of charmonia produced in two-photon collisions and decaying to four-meson final states, where the meson is either a charged pion or a charged kaon. The analysis is based on a 395fb^{-1} data sample accumulated with the Belle detector at the KEKB electron-positron collider. We observe signals for the three C-even charmonia eta_c(1S), chi_{c0}(1P) and chi_{c2}(1P) in the pi^+pi^-pi^+pi^-, K^+K^-pi^+pi^- and K^+K^-K^+K^- decay modes. No clear signals for eta_c(2S) production are found in these decay modes. We have also studied resonant structures in charmonium decays to two-body intermediate meson resonances. We report the products of the two-photon decay width and the branching fractions, Gamma_{gamma gamma}B, for each of the charmonium decay modes.Comment: 22 pages, 12 figure
    • 

    corecore