217 research outputs found

    Comparison of Internal Fixations for Distal Clavicular Fractures Based on Loading Tests and Finite Element Analyses

    Get PDF
    It is difficult to apply strong and stable internal fixation to a fracture of the distal end of the clavicle because it is unstable, the distal clavicle fragment is small, and the fractured region is near the acromioclavicular joint. In this study, to identify a superior internal fixation method for unstable distal clavicular fracture, we compared three types of internal fixation (tension band wiring, scorpion, and LCP clavicle hook plate). Firstly, loading tests were performed, in which fixations were evaluated using bending stiffness and torsional stiffness as indices, followed by finite element analysis to evaluate fixability using the stress and strain as indices. The bending and torsional stiffness were significantly higher in the artificial clavicles fixed with the two types of plate than in that fixed by tension band wiring (P<0.05). No marked stress concentration on the clavicle was noted in the scorpion because the arm plate did not interfere with the acromioclavicular joint, suggesting that favorable shoulder joint function can be achieved. The stability of fixation with the LCP clavicle hook plate and the scorpion was similar, and plate fixations were stronger than fixation by tension band wiring

    酸化型HMGB-1は間葉系幹細胞/間葉系細胞を介して大腸癌の転移性を促進する

    Get PDF
    High mobility group box-1 (HMGB1) is known to be a chemotactic factor for mesenchymal stem/stromal cells (MSCs), but the effect of post-translational modification on its function is not clear. In this study, we hypothesized that differences in the oxidation state of HMGB1 would lead to differences in the function of MSCs in cancer. In human colorectal cancer, MSCs infiltrating into the stroma were correlated with liver metastasis and serum HMGB1. In animal models, oxidized HMGB1 mobilized three-fold fewer MSCs to subcutaneous tumors compared with reduced HMGB1. Reduced HMGB1 inhibited the proliferation of mouse bone marrow MSCs (BM-MSCs) and induced differentiation into osteoblasts and vascular pericytes, whereas oxidized HMGB1 promoted proliferation and increased stemness, and no differentiation was observed. When BM-MSCs pretreated with oxidized HMGB1 were co-cultured with syngeneic cancer cells, cell proliferation and stemness of cancer cells were increased, and tumorigenesis and drug resistance were promoted. In contrast, co-culture with reduced HMGB1-pretreated BM-MSCs did not enhance stemness. In an animal orthotopic transplantation colorectal cancer model, oxidized HMGB1, but not reduced HMGB1, promoted liver metastasis with intratumoral MSC chemotaxis. Therefore, oxidized HMGB1 reprograms MSCs and promotes cancer malignancy. The oxidized HMGB1–MSC axis may be an important target for cancer therapy.博士(医学)・甲第874号・令和5年3月15

    A combination of a DNA-chimera siRNA against PLK-1 and zoledronic acid suppresses the growth of malignant mesothelioma cells in vitro.

    Get PDF
    Although novel agents effective against malignant mesothelioma (MM) have been developed, the prognosis of patients with MM is still poor. We generated a DNA-chimeric siRNA against polo-like kinase-1 (PLK-1), which was more stable in human serum than the non-chimeric siRNA. The chimeric PLK-1 siRNA inhibited MM cell proliferation through the induction of apoptosis. Next, we investigated the effects of zoledronic acid (ZOL) on MM cells, and found that ZOL also induced apoptosis in MM cells. Furthermore, ZOL augmented the inhibitory effects of the PLK-1 siRNA. In conclusion, combining a PLK-1 siRNA with ZOL treatment is an attractive strategy against MM
    corecore