26,944 research outputs found

    Joint perception: gaze and social context

    Get PDF
    We found that the way people looked at images was influenced by their belief that others were looking too. If participants believed that an unseen other person was also looking at what they could see, it shifted the balance of their gaze between negative and positive images. The direction of this shift depended upon whether participants thought that later they would be compared against the other person or would be collaborating with them. Changes in the social context influenced both gaze and memory processes, and were not due just to participants' belief that they are looking at the same images, but also to the belief that they are doing the same task. We believe that the phenomenon of joint perception reveals the pervasive and subtle effect of social context upon cognitive and perceptual processes

    Predictable Disruption Tolerant Networks and Delivery Guarantees

    Full text link
    This article studies disruption tolerant networks (DTNs) where each node knows the probabilistic distribution of contacts with other nodes. It proposes a framework that allows one to formalize the behaviour of such a network. It generalizes extreme cases that have been studied before where (a) either nodes only know their contact frequency with each other or (b) they have a perfect knowledge of who meets who and when. This paper then gives an example of how this framework can be used; it shows how one can find a packet forwarding algorithm optimized to meet the 'delay/bandwidth consumption' trade-off: packets are duplicated so as to (statistically) guarantee a given delay or delivery probability, but not too much so as to reduce the bandwidth, energy, and memory consumption.Comment: 9 page

    Fidelity Bounds for Device-Independent Advantage Distillation

    Full text link
    It is known that advantage distillation (that is, information reconciliation using two-way communication) improves noise tolerances for quantum key distribution (QKD) setups. Two-way communication is hence also of interest in the device-independent case, where noise tolerance bounds for one-way error correction are currently too low to be experimentally feasible. Existing security proofs for the device-independent repetition-code protocol (the most prominent form of advantage distillation) rely on fidelity-related security conditions, but previous bounds on the fidelity were not tight. We improve on those results by developing an algorithm that returns arbitrarily tight lower bounds on the fidelity. Our results give new insight on how strong the fidelity-related security conditions are, and could also be used to compute some lower bounds on one-way protocol keyrates. Finally, we conjecture a necessary security condition for the protocol studied in this work, that naturally complements the existing sufficient conditions.Comment: 14 pages, 3 figures. Main changes: New observations regarding the pretty-good fidelity and quantum Chernoff bound. Modification/Generalization of Conjectured Necessary Conditio

    Decorrelation of Neutral Vector Variables: Theory and Applications

    Get PDF
    In this paper, we propose novel strategies for neutral vector variable decorrelation. Two fundamental invertible transformations, namely, serial nonlinear transformation and parallel nonlinear transformation, are proposed to carry out the decorrelation. For a neutral vector variable, which is not multivariate-Gaussian distributed, the conventional principal component analysis cannot yield mutually independent scalar variables. With the two proposed transformations, a highly negatively correlated neutral vector can be transformed to a set of mutually independent scalar variables with the same degrees of freedom. We also evaluate the decorrelation performances for the vectors generated from a single Dirichlet distribution and a mixture of Dirichlet distributions. The mutual independence is verified with the distance correlation measurement. The advantages of the proposed decorrelation strategies are intensively studied and demonstrated with synthesized data and practical application evaluations

    Network intrusion detection based on LDA for payload feature selection

    Full text link
    Anomaly Intrusion Detection System (IDS) is a statistical based network IDS which can detect attack variants and novel attacks without a priori knowledge. Current anomaly IDSs are inefficient for real-time detection because of their complex computation. This paper proposes a novel approach to reduce the heavy computational cost of an anomaly IDS. Linear Discriminant Analysis (LDA) and difference distance map are used for selection of significant features. This approach is able to transform high-dimensional feature vectors into a low-dimensional domain. The similarity between new incoming packets and a normal profile is determined using Euclidean distance on the simple, low-dimensional feature domain. The final decision will be made according to a pre-calculated threshold to differentiate normal and abnormal network packets. The proposed approach is evaluated using DARPA 1999 IDS dataset. ©2010 IEEE

    Electric field-induced phase transitions in (111)-, (110)-, and (100)-oriented Pb(Mg1∕3Nb2∕3)O3 single crystals

    Get PDF
    Electric field-induced phase transitions were investigated in (111), (110), and (100) thin platelets of relaxor ferroelectric Pb(Mg1∕3Nb2∕3)O3 single crystals with electric fields applied along the ⟨111⟩, ⟨110⟩, and ⟨100⟩ directions, respectively. Temperature dependences of complex dielectric permittivity, pyroelectric current and dielectric hysteresis loops were investigated. Electric field-temperature (E-T) phase diagrams were proposed for the different directions of the field. Alongside with the high-temperature ergodic relaxor phase and the low-temperature glassy nonergodic relaxor phase existing at E=0, the ferroelectric phase may appear in the diagram at the fields higher than the threshold field (Eth). The temperature of the first-order transition between ergodic relaxor and ferroelectric phases (TC) was located in field cooling and field heating after field-cooling regimes. For the ⟨111⟩ field direction, TC is higher and Eth is lower than for the other directions. For the ⟨100⟩ direction, TC is the lowest and Eth is the highest. The critical point bounding the TC(E) line when the field is applied in ⟨111⟩ direction [ Z. Kutnjak, J. Petzelt and R. Blinc Nature 441 956 (2006)] is not observed in the ⟨110⟩ and ⟨100⟩ directions up to the highest applied field of 7.5 kV∕cm. Extrapolation of experimental data suggests that the critical point for the ⟨110⟩ and ⟨100⟩ directions (if any) can be expected only at much higher fields. In the hysteresis loops experiments performed after zero-field cooling, the lower temperature limit is determined above which a ferroelectric phase can be induced from the frozen glassy state at a given field strength or the polarization of the induced ferroelectric phase can be reversed. This limit is located at much lower temperatures in the (100) platelet than in the (110) or (111) platelets. An additional ferroelectric rhombohedral to ferroelectric orthorhombic phase transition occurs in the (110) platelet at high electric fields (∼20 kV∕cm). The mechanisms of the field-induced transformation from the glassy nonergodic relaxor phase or the ergodic relaxor phase to the ferroelectric phase are discussed

    Resonant Excitation of Graphene K-Phonon and Intra-Landau-Level Excitons in Magneto-Optical Spectroscopy

    Full text link
    Precise infrared magnetotransmission experiments have been performed in magnetic fields up to 32 T on a series of multilayer epitaxial graphene samples. We observe changes in the spectral features and broadening of the main cyclotron transition when the incoming photon energy is in resonance with the lowest Landau level separation and the energy of a K point optical phonon. We have developed a theory that explains and quantitatively reproduces the frequency and magnetic field dependence of the phenomenon as the absorption of a photon together with the simultaneous creation of an intervalley, intra-Landau-level exciton, and a K phonon.Comment: Main manuscript (5 pages); Supplementary Material (18 pages
    corecore