7,228 research outputs found

    Folding model study of the elastic α+α\alpha + \alpha scattering at low energies

    Get PDF
    The folding model analysis of the elastic α+α\alpha + \alpha scattering at the incident energies below the reaction threshold of 34.7 MeV (in the lab system) has been done using the well-tested density dependent versions of the M3Y interaction and realistic choices for the 4^4He density. Because the absorption is negligible at the energies below the reaction threshold, we were able to probe the α+α\alpha + \alpha optical potential at low energies quite unambiguously and found that the α+α\alpha + \alpha overlap density used to construct the density dependence of the M3Y interaction is strongly distorted by the Pauli blocking. This result gives possible explanation of a long-standing inconsistency of the double-folding model in its study of the elastic α+α\alpha + \alpha and α\alpha-nucleus scattering at low energies using the same realistic density dependent M3Y interaction

    Rateless codes-based secure communication employing transmit antenna selection and harvest-to-jam under joint effect of interference and hardware impairments

    Get PDF
    In this paper, we propose a rateless codes-based communication protocol to provide security for wireless systems. In the proposed protocol, a source uses the transmit antenna selection (TAS) technique to transmit Fountain-encoded packets to a destination in presence of an eavesdropper. Moreover, a cooperative jammer node harvests energy from radio frequency (RF) signals of the source and the interference sources to generate jamming noises on the eavesdropper. The data transmission terminates as soon as the destination can receive a sufficient number of the encoded packets for decoding the original data of the source. To obtain secure communication, the destination must receive sufficient encoded packets before the eavesdropper. The combination of the TAS and harvest-to-jam techniques obtains the security and efficient energy via reducing the number of the data transmission, increasing the quality of the data channel, decreasing the quality of the eavesdropping channel, and supporting the energy for the jammer. The main contribution of this paper is to derive exact closed-form expressions of outage probability (OP), probability of successful and secure communication (SS), intercept probability (IP) and average number of time slots used by the source over Rayleigh fading channel under the joint impact of co-channel interference and hardware impairments. Then, Monte Carlo simulations are presented to verify the theoretical results.Web of Science217art. no. 70

    Energy harvesting over Rician fading channel: A performance analysis for half-duplex bidirectional sensor networks under hardware impairments

    Get PDF
    In this paper, a rigorous analysis of the performance of time-switching energy harvesting strategy that is applied for a half-duplex bidirectional wireless sensor network with intermediate relay over a Rician fading channel is presented to provide the exact-form expressions of the outage probability, achievable throughput and the symbol-error-rate (SER) of the system under the hardware impairment condition. Using the proposed probabilistic models for wireless channels between mobile nodes as well as for the hardware noises, we derive the outage probability of the system, and then the throughput and SER can be obtained as a result. Both exact analysis and asymptotic analysis at high signal-power-to-noise-ratio regime are provided. Monte Carlo simulation is also conducted to verify the analysis. This work confirms the effectiveness of energy harvesting applied in wireless sensor networks over a Rician fading channel, and can provide an insightful understanding about the effect of various parameters on the system performance.Web of Science186art. no. 1781

    Two-way half duplex decode and forward relaying network with hardware impairment over Rician fading channel: system performance analysis

    Get PDF
    In this paper, the system performance analysis of a two-way decode and forward (DF) relaying network over the Rician fading environment under hardware impairment effect is proposed, analyzed and demonstrated. In this analysis, the analytical mathematical expressions of the achievable throughput, the outage probability, and ergodic capacity were proposed, analyzed and demonstrated. After that, the effect of various system parameters on the system performance is deeply studied with closed-form expressions for the system performance. Finally, the analytical results are also demonstrated by Monte-Carlo simulation in comparison with the closed-form expressions. The numerical results demonstrated and convinced the effect of the system parameters on the system performance of the two-way DF relaying network. The results show that the analytical mathematical and simulated results match for all possible parameter values.Web of Science242787

    High performance photonic microwave filters based on a 50GHz optical soliton crystal Kerr micro-comb

    Full text link
    We demonstrate a photonic radio frequency (RF) transversal filter based on an integrated optical micro-comb source featuring a record low free spectral range of 49 GHz yielding 80 micro-comb lines across the C-band. This record-high number of taps, or wavelengths for the transversal filter results in significantly increased performance including a QRF factor more than four times higher than previous results. Further, by employing both positive and negative taps, an improved out-of-band rejection of up to 48.9 dB is demonstrated using Gaussian apodization, together with a tunable centre frequency covering the RF spectra range, with a widely tunable 3-dB bandwidth and versatile dynamically adjustable filter shapes. Our experimental results match well with theory, showing that our transversal filter is a competitive solution to implement advanced adaptive RF filters with broad operational bandwidths, high frequency selectivity, high reconfigurability, and potentially reduced cost and footprint. This approach is promising for applications in modern radar and communications systems.Comment: 19 pages, 12 figures, 107 reference

    Assessment of Antioxidant Activities, Total Phenolics, and Flavonoids of Different Extracts of Strobilanthes Schomburgkii Leaves

    Get PDF
    The main purpose of this work was to assess the antioxidant activities of the n-hexane, ethyl acetate and methanol extracts of Strobilanthes schomburgkii leaves collected in Laocai province, Vietnam. Total phenolic and flavonoid contents were determined. The DPPH, H2O2 radical scavenging activity, and total antioxidant activity via phosphomolybdenum method were investigated. The results showed that the methanol extract concluded a high concentration of phenolics and flavonoids which were 65.42 mg/g and 52.05 mg/g, respectively. There was a significant correlation between total phenolic and flavonoid concentrations and EC50 values of different antioxidant assays. The antioxidant properties of the different extracts from Strobilanthes schomburgkii leaves were reported for the first time

    Pressure-Driven Filling of Closed-End Microchannel: Realization of Comb-Shaped Transducers for Acoustofluidics

    Get PDF
    We demonstrate the complete filling of both deionized water (DI water) and liquid metal (eutectic gallium-indium, EGaIn) into closed-end microchannels driven by a constant pressure at the inlet. A mathematical model based on gas diffusion through a porous polydimethylsiloxane (PDMS) wall is developed to unveil the physical mechanism in the filling process. The proposed theoretical analysis based on our model agrees well with the experimental observations. We also successfully generate traveling surface acoustic waves by actuating interdigitated microchannels filled with EGaIn. Our work provides significant insights into the fabrication of liquid electrodes that can be used for various acustofluidics applicationsAustralian Research Council DE170100600National Natural Science Foundation of China Grants No. 11472094, No. 11772259, No. U1613227, No. B1703

    Time switching for wireless communications with full-duplex relaying in imperfect CSI condition

    Get PDF
    In this paper, we consider an amplify-and-forward (AF) full-duplex relay network (FDRN) using simultaneous wireless information and power transfer, where a battery-free relay node harvests energy from the received radio frequency (RF) signals from a source node and uses the harvested energy to forward the source information to destination node. The time-switching relaying (TSR) protocol is studied, with the assumption that the channel state information (CSI) at the relay node is imperfect. We deliver a rigorous analysis of the outage probability of the proposed system. Based on the outage probability expressions, the optimal time switching factor are obtained via the numerical search method. The simulation and numerical results provide practical insights into the effect of various system parameters, such as the time switching factor, the noise power, the energy harvesting efficiency, and the channel estimation error on the performance of this network. It is also observed that for the imperfect CSI case, the proposed scheme still can provide acceptable outage performance given that the channel estimation error is bounded in a permissible interval.Web of Science1094239422

    Factors influencing to use of Bluezone

    Full text link
    This study aims to understand the main factors and their influence on the behavioral intention of users about using Bluezone. Surveys are sent to users through the Google Form tool. Experimental results through analysis of exploratory factors on 224 survey subjects show that there are 4 main factors affecting user behavior. Structural equation modeling indicates that trust, performance expectations, effort expectations, and social influence have a positive impact on behavioral intention of using BluezoneComment: in Vietnamese languag
    corecore