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Abstract. The folding model analysis of the elastic α+α scattering at the incident energies below
the reaction threshold of 34.7 MeV (in the lab system) has been done using the well-tested density
dependent versions of the M3Y interaction and realistic choices for the 4He density. Because the
absorption is negligible at the energies below the reaction threshold, we were able to probe the
α + α optical potential at low energies quite unambiguously and found that the α + α overlap
density used to construct the density dependence of the M3Y interaction is strongly distorted by
the Pauli blocking. This result gives possible explanation of a long-standing inconsistency of the
double-folding model in its study of the elastic α+α and α-nucleus scattering at low energies using
the same realistic density dependent M3Y interaction.

I. INTRODUCTION

The knowledge about the α + α interaction at low energies is of fundamental im-
portance due, in part, to diversities of the α-cluster phenomena in nuclear physics, where
one has to deal with configurations of two or more α-particles interacting with each other.
Thanks to the robust, tightly bound structure of the (spin- and isospin zero) 4He nucleus,
the elastic α + α scattering cross section has been measured quite accurately during the
sixties and seventies of the last century, and numerous phase-shift analyses were made
based on these cross sections [1, 2]. The key quantity in an optical model (OM) study of
elastic α + α scattering is the α + α optical potential (OP) that has been treated either
phenomenologically [1] or evaluated microscopically from the (two-body) nucleon-nucleon
(NN) interaction between nucleons bound in the two interacting α-particles [3, 4]. In
terms of the quantum mechanical treatment of elastic α + α scattering, the resonating
group method (RGM) (see, e.g., Refs. [3,5]) is the most rigorous approach that takes into
account the full antisymmetrization of the total wave function of the scattering system.
The one-body wave equation for the relative wave function χ(R) is then constructed with
a nonlocal RGM potential kernel. An accurate localization approximation has also been
developed [5] to yield a local optical potential U(R) to be used in the standard OM equa-
tion to determine χ(R). Given a complicated treatment of the nonlocal exchange kernel,
only a density independent NN interaction in the Gaussian form could be used as the
effective interaction in the RGM calculation. The Pauli blocking effects have also been
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studied rigorously in the fish-bone model for the α + α potential [6]. In a somewhat less
rigorous way, the double-folding model (see, e.g., Refs. [4, 7–10]) determines the OP for
the α+ α system as

U =
∑

i∈α1;j∈α2

[⟨ij|vD|ij⟩+ ⟨ij|vEX|ji⟩], (1)

where vD(EX) are the direct and exchange parts of the effective NN interaction between
nucleons in the first α-particle and those in the second one. The antisymmetrization gives
rise to the exchange term in Eq. (1) that is, in general, nonlocal in the coordinate space. To
have a local double-folded OP, an accurate local approximation for the exchange potential
has been developed [7–9], which allowed the use of some realistic density dependent NN
interaction. Among different choices of the effective NN interaction, the original density
independent M3Y interactions [11, 12] have been used with some success in the double-
folding calculations of the heavy-ion (HI) optical potential at low energies [4], where the
data are sensitive only to the potential at the surface because of the strong absorption.
However, in cases of refractive (rainbow) nucleus-nucleus scattering where the elastic data
are sensitive to the OP over a much wider radial range, the density independent M3Y
interactions failed to give a good description of the data and the inclusion of an explicit
density dependence was found necessary [13] to account for the reduction of the attractive
strength of the in-medium NN interaction that occurs as the density of the nuclear medium
increases. Such an effect has been shown to be due to the saturation properties of nuclear
matter and some realistic density dependent versions of the M3Y interaction [8, 10] have
been introduced and used successfully in the folding model analysis of the elastic α-nucleus
scattering (see the recent review in Ref. [9]), and it is natural to expect the same success of
this density dependent interaction in the study of the elastic α+α scattering. The actual
double-folding calculation has shown, however, that only the original density independent
M3Y interaction can give a reasonable description of the elastic α + α scattering at low
energies [14]. Such an inconsistency of the double-folding model has also been noted
earlier in Ref. [4], where the rainbow α-nucleus scattering data implied the inclusion of a
realistic density dependence into the M3Y interaction, while the elastic α + α scattering
data preferred the original density independent M3Y interaction.

In contrast to HI scattering, the elastic α + α scattering data at energies below
the reaction threshold of 34.7 MeV (in the lab system) can be well described by the real
OP only [1, 3, 4, 14], neglecting the imaginary (absorptive) part of the OP. Without the
absorption, the elastic α+α data measured accurately over the whole observable angular
range should be sensitive to the real OP down to small radii where the density dependent
effects should be substantial due to a high α + α overlap density. Thus, the success of
the density independent M3Y interaction in the description of the considered α+ α data
indicates likely to a strong depletion of the α + α overlap density that suppresses the
density dependent effects on the shape and depth of the α+ α potential.

To shed more light on the applicability of the double-folding model in the study of
the α + α scattering at low energies, we have performed in the present work a detailed
folding model analysis of the available elastic α + α data at energies below the reaction
threshold. The effects of the density dependence of the NN interaction to the α + α
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potential were studied carefully, based on different assumptions for the α + α overlap
density.

II. THEORETICAL FORMALISM

Our microscopic study of the elastic α+α scattering is based on the double-folding
model (DFM) [7], which calculates the real OP of the α+α system using the ground state
density of 4He nucleus and an appropriate choice of the effective NN interaction. α-particle
is a unique case when a simple Gaussian can reproduce rather well its ground state (g.s)
density. Like in numerous folding model studies of α-nucleus scattering, we have used in
the present DFM calculation the Gaussian form for the α-density suggested by Satchler
and Love [4]. This α-density has a RMS radius of 1.461 fm, close to the empirical value of
1.47± 0.02 fm that can be deduced from the experimental charge density of 4He [16,17].

It is straightforward to see that the Gaussian density is readily obtained in a simple
4-nucleon model for the α-particle, where 4 nucleons occupy the lowest s12 harmonic os-
cillator (h.o.) shell [15]. After the spurious center-of-mass (c.m.) component is excluded
from the 4-nucleon wave function using the prescription of Ref. [18], the α-density remains
in a Gaussian form but with a modified h.o. range b

ρ(r) =
4

π3/2b3
exp

(
−r

2

b2

)
→ c.m. correction → ρ(r) =

32

(3π)3/2b3
exp

(
−4r2

3b2

)
. (2)

Therefore, if one assumes
√
3 b/2 = 1.1932 fm in the α-density after the c.m. correction

then it turns out to be the same Gaussian as that suggested by Satchler and Love [4],
which has been used so far in most of the folding calculations of the α+ α and α-nucleus
potentials [4,8,9,13–15]. In the present work we have compared in some cases the results
obtained with the Gaussian density (2) with those obtained with the experimental α-
density (twice the experimental 4He charge density [16] unfolded with the finite size of
proton).

II.1. Density dependent M3Y interaction

A popular choice of the effective NN interaction for the DFM calculation has been
one of the M3Y interactions that were designed to reproduce the G-matrix elements of
the Reid [11] and Paris [12] NN potentials in an oscillator basis. Although the original
density independent M3Y interaction has been used with some success to calculate the
real HI optical potential at low energies, where the scattering data are sensitive to the
real OP only at the surface [4], it failed to account for the nuclear ‘rainbow’ scattering
(observed first in the elastic α-nucleus scattering and later on in some light heavy-ion
systems [9]), when the scattering data are sensitive to the real OP over a wider radial
range. This has motivated the inclusion of an explicit density dependence into the original
M3Y interaction [8,10,13] to properly account for the reduction of the attractive strength
of the effective NN interaction occurring at high densities of the nuclear medium (see
Fig. 1).

We have chosen for the present study the BDM3Y1 [10] and CDM3Y6 [8] density
dependent versions of the M3Y interaction that are based on the original M3Y-Reid [11]
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Fig. 1. The behavior of the density dependence BDM3Y1 and CDM3Y6 (see
Eq. (4)) of the M3Y-Reid [11] and M3Y-Paris [12] interaction, respectively.

and M3Y-Paris [12] interactions, respectively, and parametrized [8, 10] as

vD(EX)(E, ρ, s) = g(E)F (ρ)vD(EX)(s), (3)

with F (ρ) = C[1 + α exp(−βρ)− γρ]. (4)

The radial parts of the direct and exchange parts vD(EX)(s) were kept unchanged, as
derived from the original M3Y interactions, in terms of three Yukawas [11,12]. The explicit
expressions of vD(EX)(s), the linear energy dependent factor g(E) and parameters C, α, β
and γ can be found, e.g., in Ref. [9]. The parameters (4) of the BDM3Y1 and CDM3Y6
density dependences have been carefully adjusted in the Hartree-Fock (HF) calculation to
reproduce the saturation of the cold nuclear matter at ρ = ρ0, with ρ0 ≈ 0.17 fm−3, and
give the nuclear matter incompressibility K ≈ 232 and 252 MeV, respectively [9]. The
behavior of the density dependent function F (ρ) is shown in Fig. 1, and it has been probed
quite accurately in the folding model analysis of the refractive α-nucleus scattering, at the
densities up to ρ ≈ 2ρ0 [8,9]. We note that the α-particle has a very compact density that
can be as high as 2ρ0 in the center [19], and the static overlap density of the α+α system
may reach as much as 4ρ0. Therefore, the use of a density dependent NN interaction in
the folding calculation of the α+ α potential should be necessary.
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It should be noted that the BDM3Y1 and CDM3Y6 density dependences have been
tailored in the HF calculation for a uniform nuclear matter that can be represented by a
single Fermi sphere in the momentum space. The situation in a nucleus-nucleus collision
is much more complicated, and the momentum distribution of the dinuclear system is a
dynamic picture of two Fermi spheres separated by the local relative nucleon momentum.
From the nuclear matter point of view, a realistic density dependent NN interaction for the
folding model calculation of the nucleus-nucleus potential (or the dynamic simulation of
the nucleus-nucleus collision based on a transport model) should be derived basically from
a Brueckner-Hartree-Fock study of the two slabs of nuclear matter separated by different
relative nucleon momenta, and at different asymmetries of the matter densities of the two
slabs. Such an approach has been initiated in the past by Tuebingen group [20, 21] but
remains incomplete. It is, therefore, desirable that the issue raised in the present work
will give a new motivation for such a microscopic study of dinuclear matter.

II.2. Double-folding model

The generalized DFM of Ref. [7] was used to evaluate the α + α potential from
the HF-type matrix elements (1) of the density-dependent interaction (3)-(4). The (local)
direct term is readily evaluated by the standard double-folding integration

UD(E,R) =

∫
ρ1(r1)ρ2(r2)vD(E, ρ, s)d

3r1d
3r2, s = r2 − r1 +R. (5)

The exchange term in Eq. (1) is generally nonlocal in the coordinate space, but a local
form of the exchange potential can be obtained using the local WKB approximation [22]
for the change in relative motion induced by the exchange of spatial coordinates of each
interacting nucleon pair [7, 9]

UEX(E,R) =

∫
ρ1(r1, r1 + s)ρ2(r2, r2 − s)vEX(E, ρ, s)

× exp

(
iK(R)s

M

)
d3r1d

3r2. (6)

Here K(R) is the local momentum of relative motion determined from

K2(R) =
2µ

~2
[E − U(E,R)− VC(R)], (7)

where µ is the reduced mass, M = A1A2/(A1+A2) ≡ 2 is the recoil factor or the reduced
mass number, E is the scattering energy in the center-of-mass frame, U(E,R) and VC(R)
are the nuclear and Coulomb parts of the α+α potential, respectively. The calculation of
UEX is done iteratively using the explicit expression of the nonlocal density matrix given
by the h.o. wave functions of nucleons bound in the two α-particle [15]. To validate the
folding model prediction for the nucleus-nucleus potential, it is important to discuss the
treatment of the dinuclear (overlap) density embedded in the density dependence (4) of
the M3Y interaction. In the present paper we consider three approximations for the α+α
overlap density
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Frozen density approximation

We recall that the DFM generates the first-order term of the microscopic OP in the
Feshbach’s scheme [23], used in the OM equation to obtain the relative-motion wave func-
tion of the two colliding nuclei being in their ground states. Given the antisymmetrization
effects accurately taken into account via the exchange term (6), a reasonable approxi-
mation for the total density ρ of the two overlapping nuclei is the sum of the two g.s.
densities. In the calculation of the direct potential (5) the overlap density ρ in F (E, ρ) is
taken as the sum of the two α densities at the position of each nucleon

ρ = ρ1(r1) + ρ2(r2). (8)

The assumption (8) was widely adopted in the DFM calculations with the density depen-
dent NN interaction [4,8–10,13–15] because it allows an explicit separation of variables in
the three-dimensional integral (5). In evaluating the exchange potential (6), the overlap
density in F (ρ) is taken as the sum of the two α densities at the midpoint between the
two nucleons being exchanged [7]

ρ = ρ1

(
r1 +

s

2

)
+ ρ2

(
r2 −

s

2

)
. (9)

The approximation (8)-(9), dubbed as frozen density approximation (FDA), has been
used in most of the DFM calculations of the nucleus-nucleus potential using a density
dependent NN interaction when the energy is not too low. Any density rearrangement
that might happen during the collision would lead to the nuclear states different from
the ground states, and thus contribute to higher-order dynamic polarization potential in
the Feshbach’s scheme [23]. The FDA reproduces very well the observed reduction of the
attractive strength of the real nucleus-nucleus OP at small distances implied, in particular,
by the refractive α-nucleus scattering data [9,15]. The use of FDA has also been shown in
the recent DFM calculations of the nucleus-nucleus OP at medium energies by RIKEN-
Osaka group [24–26], using a realistic G-matrix interaction, as the most suitable for the
nucleus-nucleus overlap density.

In the α+ α case, the static FDA gives the overlap density reaching 3 ∼ 4ρ0 at the
smallest distances, and the considered density dependence of the M3Y interaction has not
been tested at such a high density. Moreover, it is also questionable if a simple geometrical
overlap of the two g.s. densities implied by the FDA is still a reasonable approximation
for the density dependence (4) at very low energies. As noted above, a realistic density
dependence of the effective NN interaction for the DFM calculation of the nucleus-nucleus
potential should be, in general, constructed from a microscopic study of the dinuclear
matter at different momentum separations and density asymmetries. In the momentum
space, the distance separating the two colliding slabs of nuclear matter becomes small at
low energies and the Pauli blocking should play a very crucial role in shaping the density
dependence of the NN interaction in the dinuclear medium.

In addition to the FDA, other approximations have also been used for the overlap
density in the DFM calculation like, e.g., the geometric or arithmetic averages of the two
g.s. densities adopted [27] in the folding calculations using the JLM density dependent
interaction [28].
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Fully antisymmetrized density of the α+ α system

α+α system is a very special case where one could check the validity of FDA for the
overlap density by estimating explicitly the α+ α density from the fully antisymmetrized
total wave function of 8 nucleons bound in the two α clusters. Using the microscopic
cluster model suggested by Brink for 8Be resonance [29], the total density of the α + α
system at a given distance R between the centres of mass of the two α-particles can be
determined as

ρ(r, R) = ⟨Ψ(R)|
8∑

i=1

δ(r − ri)|Ψ(R)⟩, (10)

where the total wave function Ψ(R) of the system is determined as a Slater determinant
of the single-particle wave functions of 8 nucleons bound in the two α clusters

Ψ(R) = A{ψα1 × ψα2}. (11)

Here A is the antisymmetrizer and ψα1(2)
is the antisymmetrized wave function built upon

the single-particle wave functions of 4 nucleons bound in each α cluster. The single-particle
wave functions are the same h.o. wave functions as those used to calculate the α-density
used in the present folding calculation. The details of the α+ α density calculation (10)-
(11) are given in the Appendix. We denote hereafter the use of the antisymmetrized overlap
density in the density dependence F (ρ) of the NN interaction as the AOD approximation.

The AOD procedure (see the next session and appendix) substantially changes the
radial shape of the α + α overlap density at small distances, and it is no more a direct
sum of the two α-densities. As can be seen from Eq. (23), the fully antisymmetrized
density contains two remnants of the original α-densities and an ”interference” term that
arises from the antisymmetrization of the 8-nucleon wave function. As a result, the simple
geometrical overlap of the two α-densities implied by the FDA does not hold any more
if the full antisymmetrization is taken into account. We will consider in the next session
how the AOD procedure affects the density dependence (4) of the M3Y interaction, and
whether this helps to clarify the inconsistency of the DFM discussed in the introduction.

Dynamic distortion of the FDA by Pauli blocking

The AOD treatment is still a static approximation for the density dependence (4) of
the M3Y interaction. To estimate the dynamic distortion of the density dependence by the
Pauli blocking, we refer to the nuclear matter approach to study nucleus-nucleus OP by
Tuebingen group [20,21], which has been improved and further developed by Soubbotin et
al. [30]. Namely, a nucleus-nucleus collision can be locally considered as a collision of two
slabs of nuclear matter whose densities are the local densities of the target and projectile.
The momentum distribution of the dinuclear system with the given local densities ρ1
and ρ2 is represented by the two Fermi spheres with radii kF1 = (1.5π2ρ1)

1/3 and kF2 =

(1.5π2ρ2)
1/3, and their centres separated by the average momentum of the nucleon relative

motion krel (see Fig. 2). The original approach by Tuebingen group [20,21] has used krel =
K∞/M , where K∞ is derived from Eq. (7) at R→ ∞ andM is the recoil factor in Eq. (6).
However, the OP obtained in this nuclear matter approach has been found later to be out
of the global systematics established for the nucleus-nucleus OP [9, 31]. In the present
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Fig. 2. The dynamic Pauli distortion of the two Fermi spheres representing the
local densities of the two colliding nuclei in the momentum space.

study we have used the local relative-motion momentum of nucleon krel(R) = K(R)/M ,
with K(R) determined self-consistently from the double-folded potential by Eq. (7). Such
a treatment directly links the momentum distribution of the dinuclear density to the
potential strength at each internuclear separation R, and it allowed to explain [30] the
deep mean-field-type potential established by the global systematics [31] or predicted by
the DFM [9]. The Pauli blocking forbids the overlap of the two Fermi spheres in the
momentum space, and the shapes of the two Fermi spheres must be modified wherever
kF1 + kF2 > krel(R). In the nuclear matter approaches [20, 21, 30] the OP between two
nuclei separated by a distance R is determined as the difference of the total energy of
the dinuclear system at R from that at infinite distance, based on the energy density
formalism. Within this formalism, the total density (ρ1 + ρ2) must be unchanged and the
Pauli distortion results, therefore, on a non-spherical shape of each distorted Fermi sphere
(see, e.g., Fig. 1 in Ref. [30]). The non-spherical shapes of the two density distributions
in the momentum space imply, however, that the two nuclei are no more in their ground
states but in some (Pauli) excited states. As a result, the Pauli distorted total energy does
not determine just the relative motion of the two nuclei being in their ground states, but
the motion of a wave packet that includes also excited states. Such a wave packet is, in
general, not appropriate for the description of elastic scattering [31].
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To remain in the framework of the standard DFM [7,8] without any hybrid coupling
to the energy density formalism, we have suggested in the present work a procedure to im-
prove the DFM by taking into account only the Pauli distortion of the density dependence
(4) of the M3Y interaction. The densities entering the double-folding integration (5)-(6)
remain unchanged, so that all the pair-wise interactions (1) between the projectile- and
target nucleons are fully taken into account. Thus, the density dependent strength of the
M3Y interaction is not static as adopted in the FDA, but is dynamically modified by the
Pauli blocking at the small internuclear distances R. Whenever kF1 + kF2 > krel(R), the
corresponding local densities are reduced (ρ1,2 → ρ̃1,2) so that the radii of the two reduced

Fermi spheres satisfy relation k̃F1 + k̃F2 = krel(R) that is allowed by the Pauli principle
(see Fig. 2). The total density in (4) is reduced by such a “shrinkage” of the two local
densities, but the projectile-target asymmetry χ is kept unchanged

χ =
ρ1

ρ1 + ρ2
=

k3F1

k3F1
+ k3F2

≡ ρ̃1
ρ̃1 + ρ̃2

=
k̃3F1

k̃3F1
+ k̃3F2

. (12)

Using condition (12) it is straightforward to obtain the reduced radii of the two distorted
Fermi spheres as

k̃F1 =
krel

1 +Xχ
, k̃F2 =

krelXχ

1 +Xχ
, with Xχ =

(
1− χ

χ

) 1
3

. (13)

In difference from the nuclear matter approaches [20, 21, 30], the two Fermi spheres dis-
torted by the Pauli blocking remain spherical in this case (shown by dashed lines in Fig. 2).
We denote hereafter the use of the overlap density modified by the dynamic Pauli distor-
tion (ρ = ρ̃1 + ρ̃2) in Eq. (4) as the DPD approximation.

We stress again that, similar to the AOD procedure, the Pauli distorted local den-
sities ρ̃1,2 are used only to determine the overlap density used in the density dependence
(4) of the M3Y interaction. The local and nonlocal nuclear densities entering the direct
and exchange folding integrals (5)-(6) remain the original g.s. densities of the projectile
and target, so that the DFM still determines the α+ α potential in the first order of the
Feshbach’s theory [23]. As can be seen from the discussion in the next section, the DPD
procedure strongly reduces the dinuclear matter density (ρ = ρ̃1+ ρ̃2) entering the density
dependence (4) of the M3Y interaction and helps to explain the observed depletion of
the overlap α + α density. On the other hand, the distorted total density is no more a
direct sum of the two g.s. densities used in the double-folding integration (5)-(6), and this
actually shows the breakdown of the FDA in the DFM description of the α+α scattering
at low energies.

III. TREATMENT OF THE DENSITIES AND α+ α POTENTIAL

The elastic α + α scattering data are widely available at energies ranging from as
low as 0.6 MeV up to GeV region. In the present study we have considered only the data
measured at the laboratory energies below the reaction threshold of 34.7 MeV, where the
imaginary (absorptive) part of the OP is negligible and the elastic α + α data can be
well described by the real OP only. Different versions of the folded α + α potential (1)
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were used in the present OM analysis of elastic α + α data at energies of Eα = 3 to 29.5
MeV [32–36]. To obtain the total OP, a Coulomb potential VC(R) needs to be added to the
folded potential (1). In the OM studies of elastic nucleus-nucleus scattering, VC(R) is often
chosen as the Coulomb potential between a point charge and a uniform charge distribution
of the radius RC . A more realistic choice of VC(R) for the nucleus-nucleus scattering is
the Coulomb potential generated by double-folding two uniform charge distributions with

radii RC1 = rC1A
1/3
1 and RC2 = rC2A

1/3
2 for which an analytic expression is available [37].

Both prescriptions give the correct asymptotic expression for the Coulomb potential,

VC(R) → Z1Z2e
2/R, (14)

but differ at small radii where the two nuclei overlap [31]. We have used in the present work
the folded Coulomb potential [37] for the α + α system, with the radii rC1 = rC2 = 1.36
fm. All OM calculations were done using the direct reaction code PTOLEMY [38].
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Fig. 3. The overlap α+α density at different distances R between the centres of
the two α-particles, given by different approximations for the density dependence
of the CDM3Y6 interaction. The z-axis is aligned along the beam direction, with
the origin at the center of mass of the α+ α system.

As noted above, the use of the density dependent NN interaction in the DFM
analysis of the elastic α + α scattering at low energies was not successful [14] when the
FDA was used for the overlap density in the density dependence (4). The folded potential
is usually too shallow in this case and fails to account for the elastic α + α scattering
data. The DFM can give a reasonable prediction of the α + α potential only when the
density dependence is neglected, i.e., to put F (E, ρ) = 1 in Eq. (4) and use the original
density independent M3Y interactions [11, 12]. It is trivial to find out that this effect
is due to a very high density profile of the 4He nucleus. It is well established from the
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Fig. 4. The Gaussian α-density (2) and the experimental α-density (twice the
experimental 4He charge density [16] unfolded with the finite size of proton using
the prescription of Ref. [4]). Both densities have the same RMS radius of 1.461 fm

.

electron scattering data [19] that the matter density of the α-particle is ρ ≃ 2ρ0 around
its center. As a result, the total density of the two α-particles overlapping each other
is reaching as much as 4ρ0 in the FDA, and the folded α + α potential becomes too
shallow at small radii due to a strong repulsion caused by the steady decrease of F (ρ)
at high densities (see Fig. 1). The use of a more sophisticated, fully antisymmetrized
overlap density (see Appendix) does not solve the problem. Although the overlap density
is reduced in the center of the α + α system by the full antisymmetrization (see Fig. 3),
the folded potentials obtained with the AOD approximation are even slightly shallower
than the folded potentials given by the FDA (see Fig. 5) due to a higher density given by
AOD at the sub-surface region. It becomes obvious that at the low energies, the static
overlap density of the α + α system cannot be used in the density dependence (4) of the
M3Y interaction, even when the antisymmetrization of the overlap density is taken into
account exactly.

In a dynamic picture discussed in Sec. II, the Pauli blocking does not allow the
overlap of the two Fermi spheres representing the local densities of the two α-particles.
At the considered energies, the distance between the two Fermi spheres, i.e., the nucleon
relative momentum krel(R) is quite small and reaches its maximum of 1.65 ∼ 1.7 fm−1 at
the smallest radii R (see Fig. 5). With the maximal radius kF of each Fermi sphere lying
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energies from the CDM3Y6 folded potential given by the DPD approximation for
the density dependence.

around 1.70 ∼ 1.75 fm−1 (as given by the empirical α density [19]), the maximal krel(R)
value required by the Pauli blocking must be around 3.4 ∼ 3.5 fm−1 that is much larger
than its maximum at the small distances. As a result, the two local densities entering
the density dependence F (ρ) should be strongly reduced by the dynamic Pauli distortion,
ρ̃1,2 < ρ1,2, as illustrated in Fig. 2. To implement the DPD procedure we check, at each
distance R between the centres of the two α-particles, all possible overlaps of the two
α-densities in the coordinate space ρ(r, R) = ρ1(r, R) + ρ2(r, R), where r is the radius
vector in the coordinate system with the origin at the center of mass and the z-axis lying
along the beam direction as shown in Fig. 3. To prevent the self-contraction of a Fermi
sphere having kF > krel(R) in the region where only one α-density is dominated and the
other α-density is negligible, we have applied the DPD treatment only at the locations
where both α-particles have density ρ > 0.005 fm−3. At such a location the relation

kF1 + kF2 6 krel, (15)

is being checked and ρ1,2(r, R) are replaced by ρ̃1,2(r, R) using the prescription (13) wher-
ever the relation (15) is not fulfilled. Such a DPD procedure is done iteratively until
the radii of the two Fermi spheres always satisfy the relation (15). A lower limit of the
α-density automatically stops the DPD treatment at large distances R where the two
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Fig. 6. The (unrenormalized) folded α + α potentials at the incident energies
Eα = 8.87 and 29.5 MeV given by different approximations for the density depen-
dence of the CDM3Y6 and BDM3Y1 interactions, in comparison with the (energy
independent) Gaussian potentials (16) proposed by Buck et al. [3].

α-particles are well separated and do not overlap in the coordinate space. This iterative
DPD procedure consumes most of the CPU time in our dynamical double-folding calcula-
tion, which is about 3 orders of magnitude longer than that needed for the standard DFM
calculation using the static overlap density given by the FDA. From the results shown in
Fig. 3 one can see a substantial depletion of the central density at small distances resulted
from the DPD treatment of the overlap density. At large distances (R > 3 fm), the overlap
of the two α-particles in the coordinate space becomes less significant and the depletion of
the overlap density occurs in a much smaller central spot. However, the density inside this
central spot decreases very quickly, due to a fast drop of the krel(R) values in the radial
region 2 fm . R . 4 fm (see Fig. 5). Outside the central spot of the depleted density, the
three approaches give about the same overlap density.

The folded α+α potentials at Eα = 8.87 and 29.5 MeV given by the three approx-
imations for the density dependence (3-4) of the CDM3Y6 and BDM3Y1 interactions are
shown in Fig. 6. A strong depletion of the central density by the DPD procedure leads
readily to a much deeper (density dependent) potential that is comparable in strength and
shape with the (density independent) M3Y-Paris and M3Y-Reid folded potentials. The
folded potentials given by the M3Y-Reid interaction and its density dependent versions
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turned out to be slightly shallower than those given by the M3Y-Paris interaction. To
be sure that the effects discussed here are not associated with a particular choice of the
α-density, we have used in our DFM calculation also the experimental α-density, taken
as twice the experimental 4He charge density [16] unfolded with the finite size of proton
using the prescription of Ref. [4]. The radial shapes of the two α-densities are shown in
Fig. 4 and some difference between them can be seen at small radii, although the two
densities give the same RMS radius of 1.46 fm. The M3Y-Paris and CDM3Y6 folded
potentials given by the experimental α-density are plotted in the right panel of Fig. 6,
and the same drastic difference has been found in the results given by the FDA and DPD
treatments of the density dependence of the M3Y-Paris interaction. In general, the folded
potentials given by the experimental α-density are somewhat deeper than those given by
the Gaussian density (2).

IV. DESCRIPTION OF THE ELASTIC α+ α SCATTERING

As mentioned above, the resonating group method [3,5] is a rigorous approach that
takes into account the full antisymmetrization of the total wave function of the α + α
system. It has been shown by Buck et al. [3] that about the same elastic α+α phase shifts
as well as other results of the full RGM calculation could be reproduced with an energy
independent Gaussian potential

V (R) = −V0 exp(−βR2), (16)

where V0 = 122.6225 MeV and β = 0.22 fm−2. The local potential (16) has been used
quite successfully as the α-α interaction in some cluster-folding calculations of the real
OP between two α-cluster nuclei [39, 40]. The folded potentials at Eα = 8.87 and 29.5
MeV given by the experimental α-density are compared with the Gaussian potential (16)
in the right panel of Fig. 6, and one can see that the density independent M3Y-Paris and
CDM3Y6 (DPD) potentials are quite close to the Gaussian potential at both energies. The
folded CDM3Y6 (FDA) potential is too shallow and strongly differs from the Gaussian
and CDM3Y6 (DPD) potentials at small radii.

The OM description of the elastic α + α scattering data at Eα = 8.87 and 29.5
MeV given by the folded potentials discussed in Fig. 6 are shown in Fig. 7. From the
left and middle panels of Fig. 7 one can see that the folded potentials obtained with
the FDA and AOD approximations for the overlap density fail badly to account for the
measured scattering cross sections. A reasonable description of the data is given by the
folded potential obtained with the density independent M3Y interaction as found earlier
in Ref. [14], but a much better description is given by the folded potential obtained with
the density dependent CDM3Y6 or BDM3Y1 interaction and the DPD treatment of the
density dependence. The OM results given by the folded potentials obtained with ex-
perimental α-density are compared with those given by the Gaussian potential (16) of
Buck et al. [3] in the right panel of Fig. 7. For the consistency, the Gaussian potential
(16) has been used with the Coulomb potential VC(R) = 4e2erf(aR)/R, with the a value
taken from Ref. [3]. From two versions of the folded potentials obtained with the DPD
approximation, the CDM3Y6 potential (based on the M3Y-Paris interaction) accounts for
the data better than the BDM3Y1 potential (based on the M3Y-Reid interaction). The
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Fig. 7. The OM description of the elastic α + α data measured at Eα = 8.87
and 29.5 MeV given by the unrenormalized folded potentials obtained with differ-
ent approximations for the density dependence of the CDM3Y6 (left panel) and
BDM3Y1 (middle panel) interactions. The results given by the CDM3Y6 folded
potentials obtained with the experimental α-density are compared (right panel)
with those given by the Gaussian potential of Buck et al. [3].

Gaussian potential of Buck et al. gives about the same good description of the data as
that given by the CDM3Y6 potential obtained with the DPD approximation using the
Gaussian density (2) for the α-particle.

At the considered energies, when only the elastic channel is open and there is no
coupling to other nonelastic channels, all the α + α potentials under study should be
used as given by the model, without any further renormalization of the potential strength.
However, the α+α potentials used in the present study are based on certain approximations
and an adjustment (or renormalization) of the potential strength to the best OM fit of
the data should be helpful in testing the potential model. We have made, therefore, also
the OM calculation with different α + α potentials, renormalizing the potential strength
to obtain the best OM fit of the elastic data in each case. It is natural to expect that
a realistic model for the α + α potential should give its best OM description of the data
with a renormalization coefficient N close to unity. The model becomes less meaningful
if N strongly deviates from unity [4, 7, 8]. The OM results given by the renormalized
α + α potentials are compared with the data in Fig. 8, and the main properties of the
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potentials. See the renormalization coefficient N and other properties of the α+α
optical potential in Table 1.

potential are given in Table 1. The low-energy data at 8.87 MeV have a simple diffractive
structure of one deep minimum that can be well described by all the folded potentials after
some renormalization of the potential strength. However, one can see from Table 1 that
the renormalization coefficients found for the folded potentials obtained with the FDA
and AOD approximations are N ≈ 0.6, much smaller than that found for the folded
potential obtained with the DPD approximation N ≈ 0.96. The 29.5 MeV data have
a more complicated oscillation structure that can be reproduced only by the Gaussian
potential and the CDM3Y6 potential obtained with the DPD approximation. Without
the absorption, the considered elastic α + α scattering data are sensitive to the α + α
potential down to quite small impact parameter. As an illustration, the OM description
of the 8.87 and 29.5 MeV data given by the Gaussian potential of Buck et al., with and
without the contribution of the L = 0 partial wave, are plotted in Fig. 9. It is obvious that
these data are quite sensitive to the partial wave L = 0 that corresponds to the interaction
distance of around 1 fm between the two α-particles (based on the semi-classical relation
L+1/2 ≈ kR, where k is the wave number). At such short distances, the folded potentials
obtained with the FDA and AOD approximations are too shallow and unable to account
for the data at 29.5 MeV even after a χ2-fit of the renormalization factor N . Given a
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best-fit N coefficient quite close to unity that gives a very good OM description of both
data sets, the CDM3Y6 potential obtained with the DPD approximation is undoubtedly
the best prediction of the α + α potential by the present folding model. The Gaussian
potential of Buck et al. also gives a good description of the data at these energies, with
the best-fit N coefficient close to unity (see Table 1). A very important characteristic of
the OP is the volume integral per interacting nucleon pair JV that has been often used
to identify a given potential family [31]. It can be seen from Table 1 that the CDM3Y6
potential obtained with the DPD approximation for the density dependence turned out
to have the best-fit JV value very close to that of the Gaussian potential of Buck et al..
These two potentials seem to belong to the same deep potential family (with −JV ≈ 400
MeV fm3) found from the global systematics of the light ion elastic scattering (see, e.g.,
Fig. 6.7 of Ref. [31]). The FDA and AOD approximations for the density dependence
result on a too shallow folded potential whose JV value is significantly lower than that
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Table 1. The properties of the α+α potentials at Eα = 8.87 and 29.5 MeV that
give the OM results shown in Fig. 8. N is the renormalization coefficient of the
potential found from the χ2-fit of the OM results to the elastic data. The folded
potentials were obtained with the two choices of the α-density, the Gaussian (2)
and experimental density (see Fig. 4). χ2 value is per data point and obtained
with uniform 10% errors.

Eα α-density Potential N −JV ⟨r2⟩1/2V χ2

(MeV) (MeV fm3) (fm)
8.87 - Buck et al. 0.996 412.0 2.611 0.6

(2) M3Y-Paris 0.966 438.3 2.652 2.8
exp M3Y-Paris 0.902 435.2 2.645 2.2
(2) CDM3Y6 (DPD) 0.971 419.7 2.618 1.7
exp CDM3Y6 (DPD) 0.935 415.1 2.615 1.2
(2) CDM3Y6 (FDA) 0.587 187.5 2.777 1.5
exp CDM3Y6 (FDA) 0.611 187.8 2.796 1.1
(2) CDM3Y6 (AOD) 0.628 190.1 2.811 8.8

29.5 - Buck et al. 0.990 409.6 2.611 0.6
(2) M3Y-Paris 0.815 361.4 2.661 17.4
exp M3Y-Paris 0.784 368.2 2.652 13.2
(2) CDM3Y6 (DPD) 0.958 396.5 2.627 3.3
exp CDM3Y6 (DPD) 0.949 401.8 2.621 1.2
(2) CDM3Y6 (FDA) 0.889 272.7 2.785 34.8
exp CDM3Y6 (FDA) 0.922 271.0 2.805 34.5
(2) CDM3Y6 (AOD) 0.959 279.5 2.820 46.0

of the folded potential obtained with the DPD approximation. The fact that the folded
potentials obtained with the FDA and AOD approximations could describe the 8.87 MeV
data well after being renormalized by N ≈ 0.6 shows that the renormalized potentials have
slipped into a very shallow potential family that gives a ”phase-equivalent” description of
elastic scattering at this energy. The shallow families of the α+α potential were found long
ago from the phase shift analysis of the low energy data [1], but these shallow potentials
are empirical and cannot be associated with the results of a microscopic model like RGM
or DFM.

For the simplicity, we discuss further only the DFM results obtained with the Gauss-
ian density (2). The effects caused by different approximations for the density dependence
to the DFM description of the elastic α+α data at 8.87 and 29.5 MeV were also confirmed
in the OM analysis of the data at energies 3.0 MeV 6 Eα 6 29.5 MeV, using the folded
α + α potentials. The elastic α + α data plotted in Figs. 10 and 11 show clearly the
evolution of the elastic α+ α angular distribution (with the increasing energy) from that
having a single diffractive minimum to a more complicated oscillating structure with two
pronounced diffractive minima. The (unrenormalized) folded potentials obtained with the
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20.4 MeV given by the unrenormalized (left panel) and renormalized (right panel)
CDM3Y6 folded potentials obtained with different approximations for the density
dependence. The notation of curves is the same as that in the left panel of Figs. 7
and 8.

FDA and AOD approximations fail completely to account for the data at all energies. Af-
ter some renormalization of the potential strength, the single-minimum shape of the elastic
cross section measured at low energies could be reproduced by all the folded potentials
(see right panel of Fig. 10), but those given by the FDA and AOD approximations re-
main unable to describe the data at higher energies where the diffractive pattern is more
complicated (see Fig. 11). The description of the data by the potential obtained with
the density independent M3Y interaction also becomes worse with the increasing energy,
and the only folded potential that gives consistently a good description of the data at all
energies is that obtained with the density dependent M3Y interaction and DPD approxi-
mation for the density dependence. Given a renormalization coefficient N ≈ 0.96 ∼ 0.98,
the CDM3Y6 potential obtained with the DPD approximation delivers a very good de-
scription of all the considered data (see right panels of Fig. 10 and 11). From the two
density-dependent versions of the folded potential, the BDM3Y1 potential gives a slightly
poorer fit to the data compared to that given by the CDM3Y6 potential (see Fig. 12). The
best-fit OM results given by these two folded potentials are compared with those given
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Fig. 11. The same as Fig. 10 but for the energies Eα = 21.1 to 28.5 MeV.

by the Gaussian potential of Buck et al. [3] in Fig. 12. With the Gaussian parameters
adjusted to reproduce the α + α resonance at the energy around 92 keV and the elastic
phase shift [3], the Gaussian potential gives an excellent OM description of the elastic
α + α data under study. One can see also from Fig. 13 that the best-fit renormalization
factor N of the Gaussian potential of Buck et al. is close to unity in most cases, except for
the two energies of 12.3 and 15.2 MeV where N is falling below 0.95. Thus, we conclude
that the potential of Buck et al. [3] is a very realistic analytical form available for the local
α+ α potential at low energies.

The best-fit renormalization factorN of the CDM3Y6 (DPD) potential turned out to
be also close to unity as shown in Fig. 13. The volume integrals per interacting nucleon pair
JV of different folded potential are compared with those given by the Gaussian potential
(16) in Fig. 14, and one can see that the CDM3Y6 (DPD) potential and the Gaussian
potential belong indeed to the same potential family. Moreover, these two versions of the
α + α potential also give the best OM description of the elastic α + α scattering data
under study. Thus, we conclude that the DPD approximation is a much more accurate
treatment of the density dependence (4) of the M3Y interaction compared to the FDA
and AOD procedures. Although the DPD approximation leads to a very strong depletion
of the overlap density in the center of the α+α system as shown in Fig. 3, a total neglect
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Fig. 12. The OM description of the elastic α + α data at energies of Eα = 21.1
to 28.5 MeV given by the unrenormalized (left panel) and renormalized (right
panel) α+ α potentials. The results given by the CDM3Y6 and BDM3Y1 folded
potentials obtained with the DPD approximation are shown as solid and dash-
dotted curves, respectively. The dash curves are the results given by the Gaussian
potential of Buck et al. [3].

of the density dependence worsens somewhat the OM fit to the data, especially, the α+α
scattering data measured at energies around 20 MeV and higher (see left panels of Figs. 10
and 11).

The present study has shown a vital role of the elastic scattering data measured over
the whole observable angular range in testing different theoretical models for the α + α
potential. The elastic phase shifts deduced from the phase-shift analysis of these exper-
imental cross sections are widely referred to in the literature as the experimental phase
shifts. These quantities are, however, less sensitive to the detailed shape and strength of
the potential compared to the measured elastic angular distribution. As illustration, the
experimental elastic phase shift δ0, δ2 and δ4 at low energies [2] are compared with the
OM results given by the Gaussian potential of Buck et al. [3] and the folded potentials in
Fig. 15. One can see that the Gaussian potential gives a perfect fit to the experimental
phase shifts at all energies, although the detailed OM analysis has shown (Fig. 13) that it
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Fig. 13. The best-fit renormalization coefficient N of the CDM3Y6 folded poten-
tials obtained with different approximations for the density dependence and the
Gaussian potential of Buck et al. [3] found by the OM analysis of the elastic α+α
data at energies of Eα = 3 to 29.5 MeV.

needs to be renormalized by a factor below 0.95 to fit the elastic data measured at energies
of 12.3 and 15.2 MeV. The CDM3Y6 potential (obtained with the DPD approximation)
renormalized by an average N factor of 0.97 gives about the same good fit to the elastic
phase shift, while the density independent M3Y-Paris potential (renormalized by an aver-
age N factor of 0.94) fails to describe the phase shift data at energies above 20 MeV, in
agreement with the OM results shown in Figs. 10 and 11.

V. SUMMARY

The OM analysis of the elastic α+α scattering at energies below the reaction thresh-
old of 34.7 MeV has been done using the folded potentials obtained with the CDM3Y6
and BDM3Y1 versions of the density dependent M3Y interaction [8, 10]. Different ap-
proximations for the density dependence (4) of the chosen interactions have been tested
in the OM calculation and the results were compared with those given by the Gaussian
potential of Buck et al. [3] that is based on the microscopic RGM results. The elastic
α + α data, in terms of the elastic scattering cross section measured accurately over the
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α+α potentials renormalized by the corresponding N coefficients shown in Fig. 13.

whole observable angular range, were shown to be a very efficient test ground for different
theoretical models of the α+ α potential.

Our consistent folding model description of the elastic α+ α data under study has
shown that the DPD approximation, based on the dynamic Pauli distortion of the two
overlapping α-densities in the momentum space, gives the best folding model prediction
of the α + α potential at low energies. The CDM3Y6 folded potential obtained with the
DPD approximation turned out to be very close in strength and shape to the Gaussian
potential of Buck et al. that was constructed to reproduce the experimental elastic α+ α
phase shifts and the RGM results for 8Be resonance [3]. These two potentials were shown
to belong to the same potential family in terms of the potential depth and volume integral.
They also give equally good description of the elastic α+α data under study. The present
OM analysis of the elastic α+α scattering has also confirmed that the Gaussian potential
of Buck et al. is a reliable analytical expression for the local α + α optical potential at
low energies. This result validates, therefore, the use of this Gaussian potential as the α-α
interaction in the α-cluster folding calculation [39,40].
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[2] in comparison with the OM results given by the (unrenormalized) Gaussian
potential of Buck et al. [3] and the folded potentials obtained with the density
independent M3Y-Paris interaction and density dependent CDM3Y6 interaction
(using the DPD approximation). The M3Y-Paris and CDM3Y6 folded potentials
are renormalized by N = 0.94 and 0.97, respectively.

Although the DPD treatment of the density dependence (4) of the M3Y interaction
is just a local approximation based on the Pauli blocking of the overlap of the two α-
densities in a dinuclear matter picture in the momentum space, the results of the present
study show clearly that the density dependence of the effective NN interaction should be
strongly distorted at the small distances between the two α-particles. This results seems
to explain a long standing problem of the DFM. Namely, the failure of the DFM in a
consistent description of both the α + α and α-nucleus optical potentials at low energies
using the same realistic density dependent NN interaction is due to a breakdown of the
FDA by the Pauli blocking. The DPD approximation for the density dependence of the
M3Y interaction can also be applied to study different nucleus-nucleus systems within the
same dynamic DFM approach, and it is expected to improve the performance of the DFM
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at low energies, near the Coulomb barrier. We plan to carry out this topical research in
the near future.
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APPENDIX: ANTISYMMETRIZED OVERLAP DENSITY
OF THE α+ α SYSTEM

We consider two α particles, whose centres of mass are separated by a distance R,
in the Brink’s microscopic cluster model for 8Be [29]. The antisymmetrized total wave
function of the α+ α system in this model is given explicitly as

Ψ(R) = n0(R)A{ψα1 × ψα2} =
n0(R)√
4!4!

det{φ1φ2...φ8}, (17)

where the single-nucleon state is determined as the s1/2 harmonic oscillator wave function

φi = g

(
ri +

R

2
, b

)
χiξi if i = 1, ..., 4

φi = g

(
ri −

R

2
, b

)
χiξi if i = 5, ..., 8

g(r, b) =
1

π3/4b3/2
exp

(
− r2

2b2

)
. (18)

The h.o. parameter b = 1.1932 fm [15], A is the antisymmetrizing operator, χi and ξi are
the spin and isospin wave functions of the i-th nucleon, and n0(R) is the normalization
constant determined from the condition

⟨Ψ(R) | Ψ(R)⟩ = n0(R)
2 8!

4!4!
⟨Ψ8 | AΨ8⟩ = n0(R)

2 8!

4!4!
detB = 1. (19)

Here Ψ8 = φ1...φ8, AΨ8 = det{φ1...φ8}, and the matrix elements of B are

Bij = ⟨φi|φj⟩ = 1 if j = i,

= exp

(
−R2

4b2

)
if j = i± 4,

= 0 otherwise. (20)
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The antisymmetrized overlap density of the α+ α system is determined as

ρ(r, R) = ⟨Ψ(R) |
8∑

i=1

δ(r − ri) | Ψ(R)⟩

= n0(R)
2 8!

4!4!
⟨Ψ8 |

8∑
i=1

δ(r − ri) | AΨ8⟩

=
8∑

i=1

8∑
j=1

⟨φi|δ(r − ri)|φj⟩(B−1)ji, (21)

where the matrix elements of the δ-function are

⟨φi|δ(r − ri)|φj⟩ =
1

π3/2b3
exp

[
− 1

b2

(
r ± R

2

)2
]

if j = i,

=
1

π3/2b3
exp

[
− 1

b2

(
r2 +

R2

4

)]
if j = i± 4,

= 0 otherwise. (22)

In the diagonal matrix elements, the sign is (+) when i = j 6 4 and (-) when i = j > 5.
Using the explicit expression for (B−1)ji derived directly from Eq. (20), we obtain the
α+ α overlap density (22) in the following compact form

ρ(r, R) =
4

π3/2b3[1− h(R, b)]

{
exp

[
− 1

2b2

(
r − R

2

)2
]
− 2 exp

(
−r

2

b2

)
h(R, b)

+ exp

[
− 1

2b2

(
r +

R

2

)2
]}

, with h(R, b) = exp

(
−R2

2b2

)
. (23)

Like the h.o model for the α-density discussed in Sec. II, this model for the α + α
overlap density can also be corrected for the center-of-mass motion using the prescription
of Ref. [18], and the h.o. range of the Gaussians in Eq. (18) will be modified accordingly.
However, all the results would be the same if we keep using the same empirical h.o.
parameter b = 1.1932 fm in both cases without c.m. motion correction.


