473 research outputs found

    A Study on Water Utilization in Chinese Rural Areas

    Get PDF
    In China, because rural population is great and agriculture is very important in national economy, rural areas have becomes a main sphere of water consume. There exist the problems of water shortage and water waste in the countryside. The conflicts of water resource supply and demand between industry and agriculture are very conspicuous. Various factors that include ideology, finance, technology, management and policy restrict the rational and effective use of water resource. The survey on the villages of Jia Ge Zhuang and Yao Bai Zhuang in Ji County, Tianjin reflects these problems. The government tries to solve the problems by making laws and policies, as well as affording financial and technology support to towns and villages. At the same time, it is necessary for the government to make officials and farmers realize the importance of rational water usage and saving by doing propaganda, coordinating the inter-governments relations, and defining the departments’ duties. For realizing the objective of rational water usage, it is necessary to take measures to construct and perfect irrigation installations by both superior and local governments’ investment and farmers’ labor force. Key Words: Chinese Rural Areas, Water Resource, Rational Use, Farmland, Irrigation System Résumé: En Chine,la population est grande et l’agriculture est très importante dans l’économie nationale. Les régions rurales sont devenues un sphère principal de la consommation d’eau. Il existe les problèmes d’insuffisance d’eau et le gaspillage d’eau dans la campagne. Les conflits sur les resources d’eau fournie et demandée entre industrie and agriculture sont très fréquents. Les facteurs variés tels qu’idéologie, finance, technologie, management et politique limitent l’usage rationel et effectif de ressources d’eau. L’enquête sur les villages de Jia Ge Zhuang et Yao Bai Zhuang dans le pays Ji, Tianjin reflète ces problèmes. Le government tente de résoudres les problèmes par l’élabortion des lois et les poliques, ainsi que le support financierl et technologique aux bourgs et villages. Au meme temps, il est nécessaire pour le government à render conscients les officiels et les paysans l’ importance de l’usage rationel en économisant par la publicité, en coordonnant les relations inter-governmentaux, et en déterminant les tâches des départments. Pour la realiser l’objectif de l’usage d’eau rational, il est nécessaire de prendre des mesures pour construire et perfectionner l’ installations d’irrigation par l’investissement des governements supérieurs et locaux ainsi que les forces des labeurs. Mots clés: Les régions rurales chionoises, Ressource d’eau, usage rationel, fermier, Système d’ Irrigatio

    Brain natriuretic peptide suppresses pain induced by BmK I, a sodium channel-specific modulator, in rats.

    Get PDF
    Background: A previous study found that brain natriuretic peptide (BNP) inhibited inflammatory pain via activating its receptor natriuretic peptide receptor A (NPRA) in nociceptive sensory neurons. A recent study found that functional NPRA is expressed in almost all the trigeminal ganglion (TG) neurons at membrane level suggesting a potentially important role for BNP in migraine pathophysiology. Methods: An inflammatory pain model was produced by subcutaneous injection of BmK I, a sodium channel-specific modulator from venom of Chinese scorpion Buthus martensi Karsch. Quantitative PCR, Western Blot, and immunohistochemistry were used to detect mRNA and protein expression of BNP and NPRA in dorsal root ganglion (DRG) and dorsal horn of spinal cord. Whole-cell patch clamping experiments were conducted to record large-conductance Ca2+-activated K+ (BKCa) currents of membrane excitability of DRG neurons. Spontaneous and evoked pain behaviors were examined. Results: The mRNA and protein expression of BNP and NPRA was up-regulated in DRG and dorsal horn of spinal cord after BmK I injection. The BNP and NPRA was preferentially expressed in small-sized DRG neurons among which BNP was expressed in both CGRP-positive and IB4-positive neurons while NPRA was preferentially expressed in CGRP-positive neurons. BNP increased the open probability of BKCa channels and suppressed the membrane excitability of small-sized DRG neurons. Intrathecal injection of BNP significantly inhibited BmK-induced pain behaviors including both spontaneous and evoked pain behaviors. Conclusions: These results suggested that BNP might play an important role as an endogenous pain reliever in BmK I-induced inflammatory pain condition. It is also suggested that BNP might play a similar role in other pathophysiological pain conditions including migraine

    Inhibitory Effects of Columbianadin on Nociceptive Behaviors in a Neuropathic Pain Model, and on Voltage-Gated Calcium Currents in Dorsal Root Ganglion Neurons in Mice

    Get PDF
    Radix angelicae pubescentis (RAP) has been used in Chinese traditional medicine to treat painful diseases such as rheumatism and headache. A previous study has reported that columbianadin (CBN), a major coumarin in RAP inhibits acute and inflammatory pain behaviors. However, the effects of CBN on neuropathic pain behaviors, and the potential underlying mechanism have not been reported. In the present study, the effects of CBN, compared to another major coumarin of RAP osthole (OST), on oxaliplatin-induced neuropathic pain behaviors and on the voltage-gated calcium currents in small dorsal root ganglion (DRG) neurons were studied in mice. It was found that CBN and OST inhibited both mechanical and cold hypersensitivity induced by oxaliplatin. Moreover, CBN and OST might preferentially inhibit T- and L-type calcium currents (Ica). The inhibitory effects of CBN and OST on the oxaliplatin-induced mechanical allodynia were prevented by gabapentin. These results suggest that CBN, as well as OST might inhibit neuropathic pain behaviors through an inhibition of T- and L-type calcium currents in nociceptive DRG neurons

    Extracellular signal-regulated kinases mediate the enhancing effects of inflammatory mediators on resurgent currents in dorsal root ganglion neurons

    Get PDF
    Previously we reported that a group of inflammatory mediators significantly enhanced resurgent currents in dorsal root ganglion neurons. To understand the underlying intracellular signaling mechanism, we investigated the effects of inhibition of extracellular signal-regulated kinases and protein kinase C on the enhancing effects of inflammatory mediators on resurgent currents in rat dorsal root ganglion neurons. We found that the extracellular signal-regulated kinases inhibitor U0126 completely prevented the enhancing effects of the inflammatory mediators on both Tetrodotoxin-sensitive and Tetrodotoxin-resistant resurgent currents in both small and medium dorsal root ganglion neurons. U0126 substantially reduced repetitive firing in small dorsal root ganglion neurons exposed to inflammatory mediators, consistent with prevention of resurgent current amplitude increases. The protein kinase C inhibitor Bisindolylmaleimide I also showed attenuating effects on resurgent currents, although to a lesser extent compared to extracellular signal-regulated kinases inhibition. These results indicate a critical role of extracellular signal-regulated kinases signaling in modulating resurgent currents and membrane excitability in dorsal root ganglion neurons treated with inflammatory mediators. It is also suggested that targeting extracellular signal-regulated kinases-resurgent currents might be a useful strategy to reduce inflammatory pain

    Ferrocen­yl(meth­yl)diphenyl­silane

    Get PDF
    In the title mol­ecule, [Fe(C5H5)(C18H17Si)], the distances of the Fe atom from the centroids of the unsubstituted and substituted cyclo­penta­dienyl (Cp) rings are 1.651 (1) and 1.646 (1) Å, respectively. The dihedral angle between the two Cp rings is 3.20 (17)°. The crystal packing is mainly stabilized by van der Waals forces

    Diferrocen­yl(meth­yl)phenyl­silane

    Get PDF
    In the title mol­ecule, [Fe2(C5H5)2(C17H16Si)], the cyclo­penta­dienyl rings linked to the same Fe atom are approximately eclipsed and the inter­planar angles are 1.8 (2) and 3.4 (2)°. The Fe atom is slightly closer to the substituted cyclo­penta­dienyl ring

    Protein kinase C enhances human sodium channel hNav1.7 resurgent currents via a serine residue in the domain III-IV linker

    Get PDF
    Resurgent sodium currents likely play a role in modulating neuronal excitability. Here we studied whether protein kinase C (PKC) activation can increase resurgent currents produced by the human sodium channel hNav1.7. We found that a PKC agonist significantly enhanced hNav1.7-mediated resurgent currents and this was prevented by PKC antagonists. The enhancing effects were replicated by two phosphorylation-mimicking mutations and were prevented by a phosphorylation-deficient mutation at a conserved PKC phosphorylation site (Serine 1479). Our results suggest that PKC can increase sodium resurgent currents through phosphorylation of a conserved Serine residue located in the domain III-IV linker of sodium channels

    Oxaliplatin Depolarizes the IB4– Dorsal Root Ganglion Neurons to Drive the Development of Neuropathic Pain Through TRPM8 in Mice

    Get PDF
    Use of chemotherapy drug oxaliplatin is associated with painful peripheral neuropathy that is exacerbated by cold. Remodeling of ion channels including TRP channels in dorsal root ganglion (DRG) neurons contribute to the sensory hypersensitivity following oxaliplatin treatment in animal models. However, it has not been studied if TRP channels and membrane depolarization of DRG neurons serve as the initial ionic/membrane drives (such as within an hour) that contribute to the development of oxaliplatin-induced neuropathic pain. In the current study, we studied in mice (1) in vitro acute effects of oxaliplatin on the membrane excitability of IB4+ and IB4– subpopulations of DRG neurons using a perforated patch clamping, (2) the preventative effects of a membrane-hyperpolarizing drug retigabine on oxaliplatin-induced sensory hypersensitivity, and (3) the preventative effects of TRP channel antagonists on the oxaliplatin-induced membrane hyperexcitability and sensory hypersensitivity. We found (1) IB4+ and IB4– subpopulations of small DRG neurons displayed previously undiscovered, substantially different membrane excitability, (2) oxaliplatin selectively depolarized IB4– DRG neurons, (3) pretreatment of retigabine largely prevented oxaliplatin-induced sensory hypersensitivity, (4) antagonists of TRPA1 and TRPM8 channels prevented oxaliplatin-induced membrane depolarization, and (5) the antagonist of TRPM8 largely prevented oxaliplatin-induced sensory hypersensitivity. These results suggest that oxaliplatin depolarizes IB4– neurons through TRPM8 channels to drive the development of neuropathic pain and targeting the initial drives of TRPM8 and/or membrane depolarization may prevent oxaliplatin-induce neuropathic pain

    Identification of potential key genes associated with severe pneumonia using mRNA-seq

    Get PDF
    This study aimed to identify the potential key genes associated with severe pneumonia using mRNA-seq. Nine peripheral blood samples from patients with severe pneumonia alone (SP group, n=3) and severe pneumonia accompanied with chronic obstructive pulmonary disease (COPD; CSP group, n=3), as well as volunteers without pneumonia (control group, n=3) underwent mRNA-seq. Based on the sequencing data, differentially expressed genes (DEGs) were identified by Limma package. Following the pathway enrichment analysis of DEGs, the genes that were differentially expressed in the SP and CSP groups were selected for pathway enrichment analysis and coexpression analysis. In addition, potential genes related to pneumonia were identified based on the information in the Comparative Toxicogenomics Database. In total, 645 and 528 DEGs were identified in the SP and CSP groups, respectively, compared with the normal controls. Among these DEGs, 88 upregulated genes and 80 downregulated genes were common between the two groups. The functions of the common DEGs were similar to those of the DEGs in the SP group. In the coexpression network, the commonly downregulated genes (including ND1, ND3, ND4L, and ND6) and the commonly upregulated genes (including TSPY6P and CDY10P) exhibited a higher degree. In addition, 131 DEGs (including ND1, ND3, ND6, MIR449A and TAS2R43) were predicted to be potential pneumonia-related genes. In conclusion, the present study demonstrated that the common DEGs may be associated with the progression of severe pneumonia

    Production, safety, health effects and applications of diacylglycerol functional oil in food systems: a review

    Get PDF
    Diacylglycerol (DAG) is a world leading anti-obesity functional cooking oil synthesized via structural modification of conventional fats and oils. DAG exits in three stereoisomers namely sn-1,2-DAG, sn-1,3-DAG, and sn-2,3-DAG. DAG particularly sn-1,3-DAG demonstrated to have the potential in suppressing body fat accumulation and lowering postprandial serum triacylglycerol, cholesterol and glucose level. DAG also showed to improve bone health. This is attributed to DAG structure itself that caused it to absorb and digest via different metabolic pathway than conventional fats and oils. With its purported health benefits, many studies attempt to enzymatically or chemically synthesis DAG through various routes. DAG has also received wide attention as low calorie fat substitute and has been incorporated into various food matrixes. Despite being claimed as healthy cooking oil the safety of DAG still remained uncertain. DAG was banned from sale as it was found to contain probable carcinogen glycidol fatty acid esters. The article aims to provide a comprehensive and latest review of DAG emphasizing on its structure and properties, safety and regulation, process developments, metabolism and beneficial health attributes as well as its applications in the food industry
    corecore