4 research outputs found
Plant ash augmented enzymatic hydrolysis approach for ultrafast conversion of food waste to biofertilizers
This study developed an augmentation approach of the enzymatic hydrolysis of food waste using plant ash with the fungal mash produced in situ from food waste as well.
The mixture of food waste, fungal mash and different concentrations of plant ash were prepared for hydrolysis. After the 8-h hydrolysis, the hydrolysate solid and liquid were separated. The results show that the NPK contents in both produced hydrolysate solid and liquid can meet the requirements for biofertilizer.
To find out the suitable concentration of plant ash that provides the most favourable results, a field planting trial was carried out using a commonly consumed leafy vegetable, xiao bai cai (Brassica rapa), by the addition of food waste-derived biofertilizers in place of commercial biofertilizers.
The results of the field planting trial show that the biofertilizers produced with augmentation of 15% and 30% plant ash (w/w food waste) provided results that are comparable to the growth of xiao bai cai from commercial biofertilizers. As such, it is suggested that hydrolysis of food waste with 15% or 30% plant ash (w/w food waste) and the fungal mash produced in situ from food waste could produce biofertilizers which favour the growth of plants. Hence, this may be another option in food waste management to achieve the ultimate target of zero waste discharge.Bachelor of Engineering (Environmental Engineering
A high-throughput method to characterize the gut bacteria growth upon engineered nanomaterial treatment
Human are increasingly exposed to various types of engineered nanomaterials (ENMs) via dietary ingestion of nano-enabled food products, but these ENMs' impact on the gut bacteria health is still poorly understood. Current efforts in understanding the impact of these ENMs are hampered by their optical interferences in conventional quantification and viability assays, such as optical density and whole cell fluorescence staining assays. Therefore, there is a need to develop a more reliable bacteria quantification method in the presence of ENMs to effectively screen the potential adverse effects arising from the exposure of increasing ENMs on human gut microbiome. In this study, we developed a DNA-based quantification (DBQ) method in a 96-well plate format. Post-spiking method was used to correct the interference from ENMs on the reading. We showed the applicability of this method for several types of ENMs, i.e., cellulose nanofiber (CNF), graphene oxide (GO), silicon dioxide (SiO2), and chitosan, both in pure bacterial culture and in vitro human gut microbiome community. The detection limit for the highest dosing of CNF, GO, SiO2, and chitosan ENMs was approximately 0.18, 0.19, 0.05, and 0.24 as OD600, respectively. The method was also validated by a dose response experiment of E. coli with chitosan in the course of 8 hr. We believe that this method has great potential to be used in screening the effect of ENMs on the growth of gut bacteria or any other in vitro models and normalization for metabolites or proteins analysis.Nanyang Technological UniversitySupport for the research reported, including assets and resources required for designing and performing experiments, data analysis, and interpretation, was provided by the Nanyang Technological University-Harvard T. H. Chan School of Public Health Initiative for Sustainable Nanotechnology (NTU-Harvard SusNano; NTU-HSPH 18001). The engineered nanomaterials used in the research presented in this publication were characterized and provided by the Engineered Nanomaterials Resource and Coordination Core established at Harvard T. H. Chan School of Public Health (NIH grant # U24ES026946) as part of the Nanotechnology Health Implications Research (NHIR) Consortium. The content is solely the responsibility of the authors and does not necessarily represent the official view of the National Institutes of Health
Genetic risk of extranodal natural killer T-cell lymphoma: a genome-wide association study
10.1016/S1470-2045(16)30148-6LANCET ONCOLOGY1791240-1247United State