4,333 research outputs found
Screening for the optimal induction parameters for periplasmic producing interferon-α 2b in Escherichia coli
Screening for optimum induction parameters to improve the production of periplasmic interferon-α2b (PrIFN-α2b) by recombinant Escherichia coli was conducted using shake flask culture. Recombinant E. coli Rosetta-gami 2(DE3) harboring the plasmid pET26b containing IFN-α2b gene under the control of the T7lac promoter was used, where the induction was accomplished by isopropyl β-D-1- thiogalactopyranoside (IPTG). The induction parameters (inducer concentration, point of induction, induction temperature and the length of induction) were analyzed to find the suitable range to be used for further optimization process. From the analysis, narrow range of induction temperature from 16 to 30°C and IPTG lower than 2 mM were found suitable for induction of PrIFN-α2b. On the other hand, early log phase was the preferred time to initiate the induction and the length of induction was dependent on the combination of other induction parameters used.Key words: Interferon-2b (IFN-2b), induction parameter, Escherichia coli, periplasm, shake flask culture
The chronic pain coping inventory: Confirmatory factor analysis of the French version
BACKGROUND: Coping strategies are among the psychosocial factors hypothesized to contribute to the development of chronic musculoskeletal disability. The Chronic Pain Coping Inventory (CPCI) was developed to assess eight behavioral coping strategies targeted in multidisciplinary pain treatment (Guarding, Resting, Asking for Assistance, Task Persistence, Relaxation, Exercise/Stretch, Coping Self-Statements and Seeking Social Support). The present study had two objectives. First, it aimed at measuring the internal consistency and the construct validity of the French version of the CPCI. Second, it aimed to verify if, as suggested by the CPCI authors, the scales of this instrument can be grouped according to the following coping families: Illness-focused coping and Wellness-focused coping. METHOD: The CPCI was translated into French with the forward and backward translation procedure. To evaluate internal consistency, Cronbach's alphas were computed. Construct validity of the inventory was estimated through confirmatory factor analysis (CFA) in two samples: a group of 439 Quebecois workers on sick leave in the sub-acute stage of low back pain (less than 84 days after the work accident) and a group of 388 French chronic pain patients seen in a pain clinic. A CFA was also performed to evaluate if the CPCI scales were grouped into two coping families (i.e. Wellness-focused and Illness-focused coping). RESULTS: The French version of the CPCI had adequate internal consistency in both samples. The CFA confirmed the eight-scale structure of the CPCI. A series of second-order CFA confirmed the composition of the Illness-focused family of coping (Guarding, Resting and Asking for Assistance). However, the composition of the Wellness-focused family of coping (Relaxation, Exercise/Stretch, Coping Self-Statements and Seeking Social Support) was different than the one proposed by the authors of the CPCI. Also, a positive correlation was observed between Illness and Wellness coping families. CONCLUSION: The present study indicates that the internal consistency and construct validity of the French version of the CPCI were adequate, but the grouping and labeling of the CPCI families of coping are debatable and deserve further analysis in the context of musculoskeletal and pain rehabilitation
Circulating Tumour DNA in Muscle-Invasive Bladder Cancer
Circulating tumour DNA (ctDNA) is an attractive tool in cancer research, offering many advantages over tissue samples obtained using traditional biopsy methods. There has been increasing interest in its application to muscle-invasive bladder cancer (MIBC), which is recognised to be a heterogeneous disease with overall poor prognosis. Using a range of platforms, studies have shown that ctDNA is detectable in MIBC and may be a useful biomarker in monitoring disease status and guiding treatment decisions in MIBC patients. Currently, with no such predictive or prognostic biomarkers in clinical practice to guide treatment strategy, there is a real unmet need for a personalised medicine approach in MIBC, and ctDNA offers an exciting avenue through which to pursue this goal. In this article, we present an overview of work to date on ctDNA in MIBC, and discuss the inherent challenges present as well as the potential future clinical applications
Recommended from our members
Dynamic Covalent Synthesis of Crystalline Porous Graphitic Frameworks
Porous graphitic framework (PGF) is a two-dimensional (2D) material that has emerging energy applications. An archetype contains stacked 2D layers, the structure of which features a fully annulated aromatic skeleton with embedded heteroatoms and periodic pores. Due to the lack of a rational approach in establishing in-plane order under mild synthetic conditions, the structural integrity of PGF has remained elusive and ultimately limited its material performance. Here, we report the discovery of the unusual dynamic character of the C=N bonds in the aromatic pyrazine ring system under basic aqueous conditions, which enables the successful synthesis of a crystalline porous nitrogenous graphitic framework with remarkable in-plane order, as evidenced by powder X-ray diffraction studies and direct visualization using high-resolution transmission electron microscopy. The crystalline framework displays superior performance as a cathode material for lithium-ion batteries, outperforming the amorphous counterparts in terms of capacity and cycle stability. Insertion of well-defined, evenly spaced nanoscale pores into the two-dimensional (2D) layers of graphene invokes exciting properties due to the modulation of its electronic band gaps and surface functionalities. A bottom-up synthesis approach to such porous graphitic frameworks (PGFs) is appealing but also remains a great challenge. The current methods of building covalent organic frameworks rely on a small collection of thermodynamically reversible reactions. Such reactions are, however, inadequate in generating a fully annulated aromatic skeleton in PGFs. With the discovery of dynamic pyrazine formation, we succeeded in applying this linking chemistry to obtain a crystalline PGF material, which has displayed high electrical conductivity and remarkable performance as a cathode material for lithium-ion batteries. We envision that the demonstrated success will open the door to a wide array of fully annulated 2D porous frameworks, which hold immense potential for clean energy applications. We report the unusual dynamic characteristics of the C=N bonds in the pyrazine ring promoted under basic aqueous conditions, which enables the successful synthesis of two-dimensional porous graphitic frameworks (PGFs) featuring fully annulated aromatic skeletons and periodic pores. The PGF displayed high electrical conductivity and remarkable performance as a cathode material for lithium-ion batteries, far outperforming the amorphous counterparts in terms of capacity and cycle stability
The Deep Poincare Map: A Novel Approach for Left Ventricle Segmentation
Precise segmentation of the left ventricle (LV) within cardiac MRI images is a prerequisite for the quantitative measurement of heart function. However, this task is challenging due to the limited availability of labeled data and motion artifacts from cardiac imaging. In this work, we present an iterative segmentation algorithm for LV delineation. By coupling deep learning with a novel dynamic-based labeling scheme, we present a new methodology where a policy model is learned to guide an agent to travel over the image, tracing out a boundary of the ROI – using the magnitude difference of the Poincaré map as a stopping criterion. Our method is evaluated on two datasets, namely the Sunnybrook Cardiac Dataset (SCD) and data from the STACOM 2011 LV segmentation challenge. Our method outperforms the previous research over many metrics. In order to demonstrate the transferability of our method we present encouraging results over the STACOM 2011 data, when using a model trained on the SCD dataset
Brief intervention to promote smoking cessation and improve glycemic control in smokers with type 2 diabetes: a randomized controlled trial
published_or_final_versio
Body Fat Percentage and the Long-term Risk of Fractures. The EPIC-Norfolk Prospective Population Cohort Study
Background: This cohort study aimed to determine the association between body fat percentage (BF%), incident fractures and calcaneal broadband ultrasound attenuation (BUA). Methods: Participants were drawn from the EPIC-Norfolk Prospective Population Cohort Study (median follow-up = 16.4 years). Cox models analysed the relationship between BF% and incident fractures (all and hip). Linear and restricted cubic spline (RCS) regressions modelled the relationship between BF% and BUA. Results: 14,129 participants (56.2 % women) were included. There were 1283 and 537 incident all and hip fractures respectively. The participants had a mean (standard deviation) age of 61.5 (9.0) years for women and 62.9 (9.0) years for men. Amongst men, BF% was not associated with incident all fractures. While BF% 23 % was associated with increased risk of hip fractures by up to 50 % (hazard ratio (95 % confidence interval) = 1.49 (1.06–2.12)). In women, BF% 35 % was not associated with this outcome. Higher BF% was associated with lower risk of incident hip fractures in women. Higher BF% was associated with higher BUA amongst women. Higher BF% up to ~23 % was associated with higher BUA amongst men. Conclusions: Higher BF% is associated with lower risk of fractures in women. While there was no association between BF% and all fractures in men, increasing BF% >23 % was associated with higher risk of hip fractures in men. This appears to be independent of estimated bone mineral density. Fracture prevention efforts need to consider wider physical, clinical, and environmental factors
Characterisation of Bone Beneficial Components from Australian Wallaby Bone.
Background: Osteoporosis is a condition in which the bones become brittle, increasing the risk of fractures. Complementary medicines have traditionally used animal bones for managing bone disorders, such as osteoporosis. This study aimed to discover new natural products for these types of conditions by determining mineral and protein content of bone extracts derived from the Australian wallaby. Methods: Inductively coupled plasma-mass spectrometry and Fourier transform infrared spectroscopic analysis were used for mineral tests, proteome analysis was using LC/MS/MS and the effects of wallaby bone extracts (WBE)s on calcium deposition and alkaline phosphatase activity were evaluated in osteogenic cells derived from adipose tissue-derived stem cells (ADSCs). Results: Concentrations of calcium and phosphorus were 26.21% and 14.72% in WBE respectively. Additionally, minerals found were wide in variety and high in concentration, while heavy metal concentrations of aluminium, iron, zinc and other elements were at safe levels for human consumption. Proteome analysis showed that extracts contained high amounts of bone remodelling proteins, such as osteomodulin, osteopontin and osteoglycin. Furthermore, in vitro evaluation of WBEs showed increased deposition of calcium in osteoblasts with enhanced alkaline phosphatase activity in differentiated adipose-derived stem cells. Conclusion: Our results demonstrate that wallaby bone extracts possess proteins and minerals beneficial for bone metabolism. WBEs may therefore be used for developing natural products for conditions such as osteoporosis and further investigation to understand biomolecular mechanism by which WBEs prevent osteoporosis is warranted
The importance of early arthroscopy in athletes with painful cartilage lesions of the ankle: a prospective study of 61 consecutive cases
BACKGROUND
Ankle sprains are common in sports and can sometimes result in a persistent pain condition.
PURPOSE
Primarily to evaluate clinical symptoms, signs, diagnostics and outcomes of surgery for symptomatic chondral injuries of the talo crural joint in athletes. Secondly, in applicable cases, to evaluate the accuracy of MRI in detecting these injuries. Type of study: Prospective consecutive series.
METHODS
Over around 4 years we studied 61 consecutive athletes with symptomatic chondral lesions to the talocrural joint causing persistent exertion ankle pain.
RESULTS
43% were professional full time athletes and 67% were semi-professional, elite or amateur athletes, main sports being soccer (49%) and rugby (14%). The main subjective complaint was exertion ankle pain (93%). Effusion (75%) and joint line tenderness on palpation (92%) were the most common clinical findings. The duration from injury to arthroscopy for 58/61 cases was 7 months (5.7–7.9). 3/61 cases were referred within 3 weeks from injury. There were in total 75 cartilage lesions. Of these, 52 were located on the Talus dome, 17 on the medial malleolus and 6 on the Tibia plafond. Of the Talus dome injuries 18 were anteromedial, 14 anterolateral, 9 posteromedial, 3 posterolateral and 8 affecting mid talus. 50% were grade 4 lesions, 13.3% grade 3, 16.7% grade 2 and 20% grade 1. MRI had been performed pre operatively in 26/61 (39%) and 59% of these had been interpreted as normal. Detection rate of cartilage lesions was only 19%, but subchondral oedema was present in 55%. At clinical follow up average 24 months after surgery (10–48 months), 73% were playing at pre-injury level. The average return to that level of sports after surgery was 16 weeks (3–32 weeks). However 43% still suffered minor symptoms.
CONCLUSION
Arthroscopy should be considered early when an athlete presents with exertion ankle pain, effusion and joint line tenderness on palpation after a previous sprain. Conventional MRI is not reliable for detecting isolated cartilage lesions, but the presence of subchondral oedema should raise such suspicion
Higher Spin Black Holes from CFT
Higher spin gravity in three dimensions has explicit black holes solutions,
carrying higher spin charge. We compute the free energy of a charged black hole
from the holographic dual, a 2d CFT with extended conformal symmetry, and find
exact agreement with the bulk thermodynamics. In the CFT, higher spin
corrections to the free energy can be calculated at high temperature from
correlation functions of W-algebra currents.Comment: 24 pages; v2 reference adde
- …