15 research outputs found

    Isoform‐specific upregulation of FynT kinase expression is associated with tauopathy and glial activation in Alzheimer’s disease and Lewy body dementias

    Get PDF
    This is the author accepted manuscript. The final version is available from Wiley via the DOI in this record Cumulative data suggest the involvement of Fyn tyrosine kinase in progression of Alzheimer's disease (AD). Previously, our group has shown increased immunoreactivities of the FynT isoform in AD neocortex (with no change in the alternatively spliced FynB isoform) which associated with neurofibrillary degeneration and reactive astrogliosis. Since both the aforementioned neuropathological features are also frequently found in Lewy Body dementias (LBD), we investigated potential perturbations of Fyn expression in the postmortem neocortex of patients with AD, as well as those having one of the two main subgroups of LBD: Parkinson’s disease dementia (PDD) and dementia with Lewy bodies (DLB). We found selective upregulation of FynT expression in AD, PDD and DLB which also correlated with cognitive impairment. Furthermore, increased FynT expression correlated with hallmark neuropathological lesions, soluble β-amyloid and phosphorylated tau, as well as markers of microglia and astrocyte activation. In line with the human postmortem studies, cortical FynT expression in aged mice transgenic for human P301S tau was upregulated and correlated with accumulation of aggregated phosphorylated tau as well as with microglial and astrocytic markers. Our findings point to FynT being an important mediator of disease progression in neurodegenerative dementias, likely via effects on tauopathy and neuroinflammation.National Medical Research Council, Singapor

    Sequential inverse dysregulation of the RNA helicases DDX3X and DDX3Y facilitates MYC-driven lymphomagenesis

    Get PDF
    Summary DDX3X is a ubiquitously expressed RNA helicase involved in multiple stages of RNA biogenesis. DDX3X is frequently mutated in Burkitt lymphoma, but the functional basis for this is unknown. Here, we show that loss-of-function DDX3X mutations are also enriched in MYC-translocated diffuse large B cell lymphoma and reveal functional cooperation between mutant DDX3X and MYC. DDX3X promotes the translation of mRNA encoding components of the core translational machinery, thereby driving global protein synthesis. Loss-of-function DDX3X mutations moderate MYC-driven global protein synthesis, thereby buffering MYC-induced proteotoxic stress during early lymphomagenesis. Established lymphoma cells restore full protein synthetic capacity by aberrant expression of DDX3Y, a Y chromosome homolog, the expression of which is normally restricted to the testis. These findings show that DDX3X loss of function can buffer MYC-driven proteotoxic stress and highlight the capacity of male B cell lymphomas to then compensate for this loss by ectopic DDX3Y expression

    The <i>Pratylenchus penetrans</i> transcriptome as a source for the development of alternative control strategies:mining for putative genes involved in parasitism and evaluation of <i>in planta</i> RNAi

    Get PDF
    The root lesion nematode Pratylenchus penetrans is considered one of the most economically important species within the genus. Host range studies have shown that nearly 400 plant species can be parasitized by this species. To obtain insight into the transcriptome of this migratory plant-parasitic nematode, we used Illumina mRNA sequencing analysis of a mixed population, as well as nematode reads detected in infected soybean roots 3 and 7 days after nematode infection. Over 140 million paired end reads were obtained for this species, and de novo assembly resulted in a total of 23,715 transcripts. Homology searches showed significant hit matches to 58% of the total number of transcripts using different protein and EST databases. In general, the transcriptome of P. penetrans follows common features reported for other root lesion nematode species. We also explored the efficacy of RNAi, delivered from the host, as a strategy to control P. penetrans, by targeted knock-down of selected nematode genes. Different comparisons were performed to identify putative nematode genes with a role in parasitism, resulting in the identification of transcripts with similarities to other nematode parasitism genes. Focusing on the predicted nematode secreted proteins found in this transcriptome, we observed specific members to be up-regulated at the early time points of infection. In the present study, we observed an enrichment of predicted secreted proteins along the early time points of parasitism by this species, with a significant number being pioneer candidate genes. A representative set of genes examined using RT-PCR confirms their expression during the host infection. The expression patterns of the different candidate genes raise the possibility that they might be involved in critical steps of P. penetrans parasitism. This analysis sheds light on the transcriptional changes that accompany plant infection by P. penetrans, and will aid in identifying potential gene targets for selection and use to design effective control strategies against root lesion nematodes

    Genome-wide profiling of alternative splicing in Alzheimer's disease

    Get PDF
    Alternative splicing is a highly regulated process which generates transcriptome and proteome diversity through the skipping or inclusion of exons within gene loci. Identification of aberrant alternative splicing associated with human diseases has become feasible with the development of new genomic technologies and powerful bioinformatics. We have previously reported genome-wide gene alterations in the neocortex of a well-characterized cohort of Alzheimer's disease (AD) patients and matched elderly controls using a commercial exon microarray platform [1]. Here, we provide detailed description of analyses aimed at identifying differential alternative splicing events associated with AD

    Genome-wide profiling of alternative splicing in Alzheimer's disease

    No full text
    10.1016/j.gdata.2014.09.002Genomics Data2290-29
    corecore