27 research outputs found

    Omics-based interpretation of synergism in a soil-derived cellulose-degrading microbial community

    Get PDF
    Reaching a comprehensive understanding of how nature solves the problem of degrading recalcitrant biomass may eventually allow development of more efficient biorefining processes. Here we interpret genomic and proteomic information generated from a cellulolytic microbial consortium (termed F1RT) enriched from soil. Analyses of reconstructed bacterial draft genomes from all seven uncultured phylotypes in F1RT indicate that its constituent microbes cooperate in both cellulose-degrading and other important metabolic processes. Support for cellulolytic inter-species cooperation came from the discovery of F1RT microbes that encode and express complimentary enzymatic inventories that include both extracellular cellulosomes and secreted free-enzyme systems. Metabolic reconstruction of the seven F1RT phylotypes predicted a wider genomic rationale as to how this particular community functions as well as possible reasons as to why biomass conversion in nature relies on a structured and cooperative microbial community

    An Improvement of Shotgun Proteomics Analysis by Adding Next-Generation Sequencing Transcriptome Data in Orange

    Get PDF
    BACKGROUND: Shotgun proteomics data analysis usually relies on database search. Because commonly employed protein sequence databases of most species do not contain sufficient protein information, the application of shotgun proteomics to the research of protein sequence profile remains a big challenge, especially to the species whose genome has not been sequenced yet. METHODOLOGY/PRINCIPAL FINDINGS: In this paper, we present a workflow with integrated database to partly address this problem. First, we downloaded the homologous species database. Next, we identified the transcriptome of the sample, created a protein sequence database based on the transcriptome data, and integtrated it with homologous species database. Lastly, we developed a workflow for identifying peptides simultaneously from shotgun proteomics data. CONCLUSIONS/SIGNIFICANCE: We used datasets from orange leaves samples to demonstrate our workflow. The results showed that the integrated database had great advantage on orange shotgun proteomics data analysis compared to the homologous species database, an 18.5% increase in number of proteins identification

    Deep functional analysis of synII, a 770-kilobase synthetic yeast chromosome

    Get PDF
    INTRODUCTION Although much effort has been devoted to studying yeast in the past few decades, our understanding of this model organism is still limited. Rapidly developing DNA synthesis techniques have made a “build-to-understand” approach feasible to reengineer on the genome scale. Here, we report on the completion of a 770-kilobase synthetic yeast chromosome II (synII). SynII was characterized using extensive Trans-Omics tests. Despite considerable sequence alterations, synII is virtually indistinguishable from wild type. However, an up-regulation of translational machinery was observed and can be reversed by restoring the transfer RNA (tRNA) gene copy number. RATIONALE Following the “design-build-test-debug” working loop, synII was successfully designed and constructed in vivo. Extensive Trans-Omics tests were conducted, including phenomics, transcriptomics, proteomics, metabolomics, chromosome segregation, and replication analyses. By both complementation assays and SCRaMbLE (synthetic chromosome rearrangement and modification by loxP -mediated evolution), we targeted and debugged the origin of a growth defect at 37°C in glycerol medium. RESULTS To efficiently construct megabase-long chromosomes, we developed an I- Sce I–mediated strategy, which enables parallel integration of synthetic chromosome arms and reduced the overall integration time by 50% for synII. An I- Sce I site is introduced for generating a double-strand break to promote targeted homologous recombination during mitotic growth. Despite hundreds of modifications introduced, there are still regions sharing substantial sequence similarity that might lead to undesirable meiotic recombinations when intercrossing the two semisynthetic chromosome arm strains. Induction of the I- Sce I–mediated double-strand break is otherwise lethal and thus introduced a strong selective pressure for targeted homologous recombination. Since our strategy is designed to generate a markerless synII and leave the URA3 marker on the wild-type chromosome, we observed a tenfold increase in URA3 -deficient colonies upon I- Sce I induction, meaning that our strategy can greatly bias the crossover events toward the designated regions. By incorporating comprehensive phenotyping approaches at multiple levels, we demonstrated that synII was capable of powering the growth of yeast indistinguishably from wild-type cells (see the figure), showing highly consistent biological processes comparable to the native strain. Meanwhile, we also noticed modest but potentially significant up-regulation of the translational machinery. The main alteration underlying this change in expression is the deletion of 13 tRNA genes. A growth defect was observed in one very specific condition—high temperature (37°C) in medium with glycerol as a carbon source—where colony size was reduced significantly. We targeted and debugged this defect by two distinct approaches. The first approach involved phenotype screening of all intermediate strains followed by a complementation assay with wild-type sequences in the synthetic strain. By doing so, we identified a modification resulting from PCRTag recoding in TSC10 , which is involved in regulation of the yeast high-osmolarity glycerol (HOG) response pathway. After replacement with wild-type TSC10 , the defect was greatly mitigated. The other approach, debugging by SCRaMbLE, showed rearrangements in regions containing HOG regulation genes. Both approaches indicated that the defect is related to HOG response dysregulation. Thus, the phenotypic defect can be pinpointed and debugged through multiple alternative routes in the complex cellular interactome network. CONCLUSION We have demonstrated that synII segregates, replicates, and functions in a highly similar fashion compared with its wild-type counterpart. Furthermore, we believe that the iterative “design-build-test-debug” cycle methodology, established here, will facilitate progression of the Sc2.0 project in the face of the increasing synthetic genome complexity. SynII characterization. ( A ) Cell cycle comparison between synII and BY4741 revealed by the percentage of cells with separated CEN2-GFP dots, metaphase spindles, and anaphase spindles. ( B ) Replication profiling of synII (red) and BY4741 (black) expressed as relative copy number by deep sequencing. ( C ) RNA sequencing analysis revealed that the significant up-regulation of translational machinery in synII is induced by the deletion of tRNA genes in synII. </jats:sec

    The oyster genome reveals stress adaptation and complexity of shell formation

    Get PDF
    The Pacific oyster Crassostrea gigas belongs to one of the most species-rich but genomically poorly explored phyla, the Mollusca. Here we report the sequencing and assembly of the oyster genome using short reads and a fosmid-pooling strategy, along with transcriptomes of development and stress response and the proteome of the shell. The oyster genome is highly polymorphic and rich in repetitive sequences, with some transposable elements still actively shaping variation. Transcriptome studies reveal an extensive set of genes responding to environmental stress. The expansion of genes coding for heat shock protein 70 and inhibitors of apoptosis is probably central to the oyster's adaptation to sessile life in the highly stressful intertidal zone. Our analyses also show that shell formation in molluscs is more complex than currently understood and involves extensive participation of cells and their exosomes. The oyster genome sequence fills a void in our understanding of the Lophotrochozoa. © 2012 Macmillan Publishers Limited. All rights reserved

    Enhanced indirect ferromagnetic p-d exchange coupling of Mn in oxygen rich ZnO:Mn nanoparticles synthesized by wet chemical method

    No full text
    This paper investigates the ferromagnetism in ZnO:Mn powders and presents our findings about the role played by the doping concentration and the structural defects towards the ferromagnetic signal. The narrow-size-distributed ZnO:Mn nanoparticles based powders with oxygen rich stoichiometery were synthesized by wet chemical method using zinc acetate dihydrate and manganese acetate tetrahydrate as precursors. A consistent increase in the lattice cell volume, estimated from x-ray diffraction spectra and the presence of Mn 2p3/2 peak at ∼640.9 eV, in x-ray photoelectron spectroscopic spectra, confirmed a successful incorporation of manganese in its Mn2+ oxidation state in ZnO host matrix. Extended deep level emission spectra in Mn doped ZnO powders exhibited the signatures of oxygen interstitials and zinc vacancies except for the sample with 5 at. % Mn doping. The nanocrystalline powders with 2 and 5 at. % Mn doping concentration were ferromagnetic at room temperature while the 10 at. % Mn doped sample exhibited paramagnetic behavior. The maximum saturation magnetization of 0.05 emu/g in the nanocrystalline powder with 5 at. % Mn doping having minimum defects validated the ferromagnetic signal to be due to strong p-d hybridization of Mn ions.Published versio

    Alteration of Mn exchange coupling by oxygen interstitials in ZnO:Mn thin films

    No full text
    The un-doped and Mn doped ZnO thin films, with oxygen rich stoichiometry, were deposited onto Si (1 0 0) substrate using spin coating technique. The structural analysis revealed the hexagonal wurtzite structure without any impurity phase formation. A consistent increase in cell volume with the increase in Mn doping concentration confirmed the successful incorporation of bigger sized tetrahedral Mn2+ ions (0.83 Å) in ZnO host matrix that was also endorsed by the presence of Mn 2p3/2 core level XPS spectroscopic peak. Extended deep level emission (DLE) spectra centered at ∼627 nm confirmed the presence of oxygen interstitials. Moreover, the magnetic measurements of field dependent M–H curves revealed the origin of ferromagnetic ordering from Mn-defect pair exchange coupling with oxygen interstitials in ZnO host matrix

    Identification of Novel Biomarkers for Sepsis Prognosis via Urinary Proteomic Analysis Using iTRAQ Labeling and 2D-LC-MS/MS

    Get PDF
    <div><h3>Objectives</h3><p>Sepsis is the major cause of death for critically ill patients. Recent progress in proteomics permits a thorough characterization of the mechanisms associated with critical illness. The purpose of this study was to screen potential biomarkers for early prognostic assessment of patients with sepsis.</p> <h3>Methods</h3><p>For the discovery stage, 30 sepsis patients with different prognoses were selected. Urinary proteins were identified using isobaric tags for relative and absolute quantitation (iTRAQ) coupled with LC-MS/MS. Mass spec instrument analysis were performed with Mascot software and the International Protein Index (IPI); bioinformatic analyses were used by the algorithm of set and the Gene Ontology (GO) Database. For the verification stage, the study involved another 54 sepsis-hospitalized patients, with equal numbers of patients in survivor and non-survivor groups based on 28-day survival. Differentially expressed proteins were verified by Western Blot.</p> <h3>Results</h3><p>A total of 232 unique proteins were identified. Proteins that were differentially expressed were further analyzed based on the pathophysiology of sepsis and biomathematics. For sepsis prognosis, five proteins were significantly up-regulated: selenium binding protein-1, heparan sulfate proteoglycan-2, alpha-1-B glycoprotein, haptoglobin, and lipocalin; two proteins were significantly down-regulated: lysosome-associated membrane proteins-1 and dipeptidyl peptidase-4. Based on gene ontology clustering, these proteins were associated with the biological processes of lipid homeostasis, cartilage development, iron ion transport, and certain metabolic processes. Urinary LAMP-1 was down-regulated, consistent with the Western Blot validation.</p> <h3>Conclusion</h3><p>This study provides the proteomic analysis of urine to identify prognostic biomarkers of sepsis. The seven identified proteins provide insight into the mechanism of sepsis. Low urinary LAMP-1 levels may be useful for early prognostic assessment of sepsis.</p> <h3>Trial Registration</h3><p>ClinicalTrial.gov <a href="http://www.clinicaltrials.gov/ct2/show/NCT01493492">NCT01493492</a></p> </div
    corecore