9 research outputs found

    人のつま先制御能力を向上させる歩行訓練ロボットの適応的な介入手法の提案

    Get PDF
    早大学位記番号:新8439早稲田大

    Prediction Algorithm of Parameters of Toe Clearance in the Swing Phase

    No full text
    The adaptive control of gait training robots is aimed at improving the gait performance by assisting motion. In conventional robotics, it has not been possible to adjust the robotic parameters by predicting the toe motion, which is considered a tripping risk indicator. The prediction of toe clearance during walking can decrease the risk of tripping. In this paper, we propose a novel method of predicting toe clearance that uses a radial basis function network. The input data were the angles, angular velocities, and angular accelerations of the hip, knee, and ankle joints in the sagittal plane at the beginning of the swing phase. In the experiments, seven subjects walked on a treadmill for 360 s. The radial basis function network was trained with gait data ranging from 20 to 200 data points and tested with 100 data points. The root mean square error between the true and predicted values was 3.28 mm for the maximum toe clearance in the earlier swing phase and 2.30 mm for the minimum toe clearance in the later swing phase. Moreover, using gait data of other five subjects, the root mean square error between the true and predicted values was 4.04 mm for the maximum toe clearance and 2.88 mm for the minimum toe clearance when the walking velocity changed. This provided higher prediction accuracy compared with existing methods. The proposed algorithm used the information of joint movements at the start of the swing phase and could predict both the future maximum and minimum toe clearances within the same swing phase

    Optical Myography-Based Sensing Methodology of Application of Random Loads to Muscles during Hand-Gripping Training

    No full text
    Hand-gripping training is important for improving the fundamental functions of human physical activity. Bernstein’s idea of “repetition without repetition” suggests that motor control function should be trained under changing states. The randomness level of load should be visualized for self-administered screening when repeating various training tasks under changing states. This study aims to develop a sensing methodology of random loads applied to both the agonist and antagonist skeletal muscles when performing physical tasks. We assumed that the time-variability and periodicity of the applied load appear in the time-series feature of muscle deformation data. In the experiment, 14 participants conducted the gripping tasks with a gripper, ball, balloon, Palm clenching, and paper. Crumpling pieces of paper (paper exercise) involves randomness because the resistance force of the paper changes depending on the shape and layers of the paper. Optical myography during gripping tasks was measured, and time-series features were analyzed. As a result, our system could detect the random movement of muscles during training

    Repeated exposure to tripping like perturbations elicits more precise control and lower toe clearance of the swinging foot during steady walking

    Get PDF
    Controlling minimum toe clearance (MTC) is considered an important factor in preventing tripping. In the current study, we investigated modifications of neuro-muscular control underlying toe clearance during steady locomotion induced by repeated exposure to tripping-like perturbations of the right swing foot. Fourteen healthy young adults (mean age 26.4 +/- 3.1 years) participated in the study. The experimental protocol consisted of three identical trials, each involving three phases: steady walking (baseline), perturbation, and steady walking (post perturbation). During the perturbation, participants experienced 30 tripping-like perturbations at unexpected timing delivered by a custom-made mechatronic perturbation device. The temporal parameters (cadence and stance phase%), mean, and standard deviation of MTC were computed across approximately 90 strides collected during both baseline and post-perturbation phases, for all trials. The effects of trial (three levels), phase (two levels: baseline and post-perturbation) and foot (two levels: right and left) on the outcome variables were analyzed using a three-way repeated measures analysis of variance. The results revealed that exposure to repeated trip-like perturbations modified MTC toward more precise control and lower toe clearance of the swinging foot, which appeared to reflect both the expectation of potential forthcoming perturbations and a quicker compensatory response in cases of a lack of balance. Moreover, locomotion control enabled subjects to maintain symmetric rhythmic features during post-perturbation steady walking. Finally, the effects of exposure to perturbation quickly disappeared among consecutive trials

    Piton: Investigating the Controllability of a Wearable Telexistence Robot

    Get PDF
    The COVID-19 pandemic impacted collaborative activities, travel, and physical contact, increasing the demand for real-time interactions with remote environments. However, the existing remote communication solutions provide limited interactions and do not convey a high sense of presence within a remote environment. Therefore, we propose a snake-shaped wearable telexistence robot, called Piton, that can be remotely used for a variety of collaborative applications. To the best of our knowledge, Piton is the first snake-shaped wearable telexistence robot. We explain the implementation of Piton, its control architecture, and discuss how Piton can be deployed in a variety of contexts. We implemented three control methods to control Piton: HM—using a head-mounted display (HMD), HH—using an HMD and hand-held tracker, and FM—using an HMD and a foot-mounted tracker. We conducted a user study to investigate the applicability of the proposed control methods for telexistence, focusing on body ownership (Alpha IVBO), mental and physical load (NASA-TLX), motion sickness (VRSQ), and a questionnaire to measure user impressions. The results show that both the HM and HH provide relevantly high levels of body ownership, had high perceived accuracy, and were highly favored, whereas the FM control method yielded the lowest body ownership effect and was least favored. We discuss the results and highlight the advantages and shortcomings of the control methods with respect to various potential application contexts. Based on our design and evaluation of Piton, we extracted a number of insights and future research directions to deepen our investigation and realization of wearable telexistence robots

    Gait Phase Detection Based on Muscle Deformation with Static Standing-Based Calibration

    No full text
    Gait phase detection, which detects foot-contact and foot-off states during walking, is important for various applications, such as synchronous robotic assistance and health monitoring. Gait phase detection systems have been proposed with various wearable devices, sensing inertial, electromyography, or force myography information. In this paper, we present a novel gait phase detection system with static standing-based calibration using muscle deformation information. The gait phase detection algorithm can be calibrated within a short time using muscle deformation data by standing in several postures; it is not necessary to collect data while walking for calibration. A logistic regression algorithm is used as the machine learning algorithm, and the probability output is adjusted based on the angular velocity of the sensor. An experiment is performed with 10 subjects, and the detection accuracy of foot-contact and foot-off states is evaluated using video data for each subject. The median accuracy is approximately 90% during walking based on calibration for 60 s, which shows the feasibility of the static standing-based calibration method using muscle deformation information for foot-contact and foot-off state detection
    corecore