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Abstract 
 

 

Walking is important for promoting active aging, which contributes to the health and longevity 
of societies. Frequent walking in daily life helps keep physical functions and reduces lifestyle-
related diseases. However, the risk of falling during walking inhibits walking in daily life. In 
particular, tripping, or unintentional contact of the toe against ground or obstacles, is one of the 
main causes of falling. Prevent tripping promotes walking as a daily safe activity. Therefore, it is 
important to develop equipment that can reduce tripping risk during walking. 

Robotic technology has the potential to encourage humans to walk with a low risk of tripping. 
Gait assistance robots aim to assist with the walking motion in older people during their outdoor 
activities. The gait assistance robots are designed to be used in daily life and assist the gait motion 
by directly moving the lower limbs. In contrast, gait training robots aim to maintain or improve 
the ability of people to walk by themselves. People can rely on robotic assistance and reduce their 
own exertion when the robot moves human legs. Gait training is required for promoting the 
improvement of gait, which declines with age and maximizing the user ability in their daily lives.  

Robot-aided gait training has been researched for improving motor control ability without 
depending on daily robotic assistance. Adaptive control is important in gait training robots as they 
are required to encourage people to walk actively. Specifically, an approach of the assistance as 
needed has been researched. Control of the interaction force between a robot and a human allows 
the user to walk in a different manner from the desired predetermined trajectory using force-field 
control. As the trajectory-based control is mainly targeted at severely affected patients, multiple 
degrees of freedom are used to recover motor function for joint-angular trajectory generation. 
Another adaptive approach of assistive technology is torque optimization by using a cable-driven 
robot based on the estimation of metabolic cost for improving human’s energy efficiency while 
walking. The cable-driven mechanism is mainly used for people who can walk by themselves. 
The conventional algorithms are adaptive to human ability and involve the evaluation of the 
human state after human action. Conversely, no conventional gait training robots can adjust 
control parameters based on tripping avoidance ability. 

Tripping occurs if the toe approaches the ground at an arbitrary point among gait cycles. 
Minimum toe clearance (MTC) in the mid-swing phase is a clinical parameter to avoid tripping. 
The human sensory-motor system controls the MTC to avoid its reduction. Toe height is 
controlled corresponding to the environment with conscious function. However, there is a 
possibility that people are not aware of small steps, such as those over a carpet or a rug, thus 
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causing tripping. Modification of the control ability to avoid MTC reduction is necessary for 
reducing the tripping risk. 

The objective of this study is to present a control system for gait training robots with 
intermittent force application based on the prediction of MTC to improve human toe control 
ability during walking. To avoid the MTC reduction and, thus, to encourage people to walk, the 
MTC needs to be previously predicted and, when the value is lower, modified. It is necessary to 
apply a force to the human body to modify the MTC only in case of reduction. Therefore, a system 
to switch the assistance-mode and non-assistance-mode was necessary. Moreover, the author 
assumed that the kinematic information of lower limb joints in the same phase among gait cycles 
was related to future toe clearance. Therefore, the techniques for the detection of phase and pattern 
classification were proposed and combined as the prediction algorithm. Moreover, the gait phase 
detection technique is needed for robotic control. Prediction should be performed sufficiently 
early to assist the swing motion. 

Chapter 1 introduces the background of the thesis in terms of aged-society and the importance 
of walking for establishing society's health and longevity. Moreover, the author describes the 
purpose and originality of this study after summarizing the state-of-the-art robotic technologies 
that encourage people to walk and neurophysiological mechanisms of human locomotion. 

Chapter 2 introduces a hardware system of the robot with a cable-driven system that increases 
toe height. To establish the force application method, it is necessary to clarify the relationship 
between the timing of the applied force and the change in toe trajectory during walking. The 
author designed the system to apply the force to a part of the shank and the force direction was 
longitudinal along the shank toward the knee. The robot controls the motor rotation and transmits 
the cable tensile force to the lower leg. This actuator system was designed to ensure safety: the 
motor does not pull the cable when it is not activated and almost all the pulleys are located far 
away from the body so that the cable tensile force is transmitted only to a frame which people 
wore. The cable tensile force was measured by the loadcell attached between the frame and the 
cable-spring component. First, the effect of force application timings on the joints and the toe was 
investigated in younger people. Four-time points of force application were considered based on 
knee flexion motion, i.e., condition 1, time when the knee joint started flexing in pre-swing phase; 
condition 2, time when the toe was lifted by knee flexion motion; condition 3: time when the knee 
joint was flexing after toe-off; and condition 4: time when knee joint was about to finish flexing. 
The increase in the maximum knee flexion angle caused the increase of the maximum toe 
clearance in the swing phase. Changes in the ratio of the hip angle to the knee angle after 
maximum toe clearance can be considered as the cause of increased minimum toe clearance. The 
force application in the later swing phase might inhibit older people from extending the knee and 
contacting the ground. Next, the effect of force application at toe-off was investigated in older 
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people. MTC could be increased by the force application around toe-off even in older people. 
Consequently, the author concludes that the force application around toe-off was effective as 
assistance to increase MTC. 

Chapter 3 introduces the proposed novel gait event detection algorithm. For precise timing 
control of force application and prediction of MTC, a more precise algorithm for gait event 
detection than the method mentioned in chapter 2 was needed. The author proposed the algorithm 
using the plantar structure between lower limb joint angles that are different among phases. In 
chapter 2, the timing of force application to increase the MTC was toe-off or later. Therefore, the 
author aimed at ensuring the algorithm to detect the toe-off phase. First, the algorithm derives the 
four planes, which are related to swing motion, motion for preparing foot–ground contact, loading 
response motion, and support the motion for the body, in the angular space of hip, knee, and ankle 
joints without supervised learning. Next, the switching points of the planes related to toe-off were 
detected by calculating the measured angular coordinates and the planes. The results of the 
experiment involving seven subjects show the change in the planes reflected the change in gait 
phases. The error was less than 0.035 s when the gait events were detected after calculating planes 
using the first gait datum. Moreover, although the data were analyzed offline, the results show 
that the heel contact and toe-off could be detected as soon as the angles were sensed once the 
planes were derived. 

Chapter 4 introduces a novel toe clearance prediction algorithm with a radial basis function 
network using the angles, angular velocities, and angular accelerations of the hip, knee, and ankle 
joints in the sagittal plane. The calculation timing of the proposed algorithm was the start of the 
swing phase, and the MTC predicted appeared in the same swing phase. The input data could be 
extracted with the algorithm based on the method established in Chapter 3. The author performed 
experiments where six subjects walked on a treadmill for 360 s. For each subject, gait data with 
20-200 gait cycles were used for training the radial basis function and 100 gait cycles data were 
used for evaluation in each person. The root mean square error between the measured MTC and 
the predicted MTC was 2.34 mm. Moreover, the error was 2.88 mm when the walking velocity 
was changed. The errors of the MTC are smaller compared with those of previous methods. The 
probability of detecting a value lower than the median toe clearance was higher than 68%, that is, 
the probability was higher than the probability of random detection. Although the accuracy can 
still be improved, the author concludes that this algorithm is able to influence the distribution of 
minimum toe clearance because the error was smaller than the original standard deviation of 
minimum toe clearance. 

Chapter 5 introduces the evaluation of the system that intermittently applies force based on 
the MTC prediction algorithm to encourage people to walk by avoiding MTC reduction. The 
algorithms of Chapters 3 and 4 were implemented on the hardware system of Chapter 2. Eight 
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participants were asked to walk on a treadmill, and we tested the effect of the system on the 
participant’s MTC distribution. First, the radial basis function network was trained with 
approximately 200 gait cycle data in each person. Next, the data of MTC before, during, and after 
the assistance phase were analyzed for 120 s. The force-application and non-force-application 
modes were switched based on the prediction result. The results showed that the minimum and 
first quartile values of MTC could be increased during and after the assistance phase. If the 
participants were fully moved by the robot, the after-effect did not alter the guided motion. 
Therefore, the author assumes that the proposed intermittent force application based on prediction 
involved modification by encouraging the participants to try to avoid MTC reduction consciously 
through proprioceptive stimulation. 

Chapter 6 describes the conclusion and limitations of the study as well as proposes the 
research scope. In future studies, the long-term investigation of gait training effects with the 
proposed system would be beneficial. The author assumes that the automatic calibration method 
of angular sensors would be required for long-term use in the case where the sensors shift. 

The contribution of this study is the establishment of an intermittent force application method 
in gait training robots based on the prediction of MTC and the modification of the MTC 
distribution. The proposed system allows people to freely move and can be combined with various 
training systems for reproducing environments such as obstacles. Moreover, the proposed 
prediction-based assistance method can be used in other training systems to improve the precision 
of the motion and device control ability. 

 

 

 



Table of contents-1 
 

Table of contents 
Chapter 1: Introduction ..................................................................................................... 1 

1.1 Importance of realizing a health and longevity society ...................................... 1 
1.1.1 Aging society ........................................................................................................ 1 
1.1.2 Disuse syndrome .................................................................................................. 3 
1.1.3 Problem while walking ......................................................................................... 5 

1.2 Gait mechanism .................................................................................................. 5 

1.2.1 Gait phase ............................................................................................................. 5 

1.2.2 Neuro-system for locomotion ............................................................................... 7 
1.2.3 Human control stragey for avoiding tripping ....................................................... 9 

1.3 Role of robotics for encouraging people to walk ............................................. 10 

1.3.1 Importance of gait training robots ...................................................................... 11 
1.3.2 Classification of gait training robot .................................................................... 12 

1.3.2.1 Non-assistance-based gait training robot................................................. 12 

1.3.2.2 Assistance-based gait training robot ........................................................ 13 

1.3.3 Control methods of assistance of gait training rbot ............................................ 18 
1.3.3.1 Positional control ..................................................................................... 18 

1.3.3.2 Electromyography (EMG) based control ................................................ 18 

1.3.3.3 Impedance control ................................................................................... 19 

1.3.3.4 Adaptive control ...................................................................................... 19 

1.4 Objective of the thesis ...................................................................................... 21 

1.5 Structure of the thesis ....................................................................................... 23 

Chapter 2: Gait Assistance Method ................................................................................ 28 

2.1 Background ....................................................................................................... 28 

2.2 Robotic system ................................................................................................. 29 

2.2.1 Design and configuration ................................................................................... 29 

2.2.2 Force application method ................................................................................... 38 
2.2.2.1 Decision of assistance timing .................................................................. 38 

2.2.2.2 Force control method............................................................................... 40 

2.3 Experiment in younger people .......................................................................... 41 

2.3.1 Experimental procedure ..................................................................................... 41 

2.3.2 Force application timings ................................................................................... 43 



Table of contents-2 
 

2.3.3 Evaluation method .............................................................................................. 44 

2.4 Experimental results in younger people ........................................................... 54 

2.4.1 Force application ................................................................................................ 46 

2.4.2 Comparison of the range of knee angles without and with frame ...................... 48 

2.4.3 Change in the toe trajectory................................................................................ 48 

2.4.4 Change in the leg joint angles ............................................................................ 50 

2.5 Experimental results in older people ................................................................ 51 

2.5.1 Protocol .............................................................................................................. 51 

2.4.2 Result in older people ......................................................................................... 54 

2.5 Discussion ......................................................................................................... 54 

2.6 Summary ........................................................................................................... 56 

Chapter 3: Gait event detection algorithm ...................................................................... 58 

3.1 Related research about gait event detection ..................................................... 58 

3.2 Algorithm .......................................................................................................... 60 

3.3 Evaluation experiment protocol........................................................................ 65 

3.4 Result ................................................................................................................ 68 

3.5 Discussion ......................................................................................................... 71 

3.6 Summary ........................................................................................................... 74 

Chapter 4: Prediction algorithm of MTC ....................................................................... 75 

4.1 Background ....................................................................................................... 75 

4.2 Methods ............................................................................................................ 77 

4.3 Evaluatin experiment ........................................................................................ 81 

4.4 Results and discussion ...................................................................................... 84 
4.5 Summary ........................................................................................................... 92 

Chapter 5: Evaluation of prediction-based assistance .................................................... 94 

5.1 System flow ...................................................................................................... 94 

5.2 Evaluation experiment ...................................................................................... 96 
5.2.1 Investigation of the effect of intermittent force application ............................... 96 

5.2.2 Evaluation of the effect of prediction-based training ......................................... 98 

5.3 Results and discussion .................................................................................... 100 
5.3.1 Investigation of the effect of intermittent force application ............................. 100 

5.3.2 Evaluation of the effect of prediction-based training ....................................... 104 



Table of contents-3 
 

 

5.4 Summary .......................................................................................................... 110 

Chapter 6: Conclusion ................................................................................................... 111 

6.1 Summary .......................................................................................................... 111 

6.2 Future works .................................................................................................... 114 

References ..................................................................................................................... 117 

Acknowledgement ........................................................................................................ 132 

Publication list .............................................................................................................. 133 

 

 

 

 
 



Symbol Tables-1 
 

Symbol tables 
 

 
F              
τ 
θ 
L 
V 
Φ 
S, U  
K 
P 
Q 
R 
w 
α 
O 
a, b ,c 
W 
x 
y 
c 
N 
σ 
m 
γ 
dmax 

Td 

ΔT              

Force 
Torque 
Joint angle  
Length of a segment of body 
Voltage 
Polar angle 
Switching coordinates of phases in angular space 
Proportional gain 
Coordinates in angular space 
Projected coordinates to plane  
Coordinates on the plane 
An eigenvector constituting a plane in angular space  
Coefficients of the eigenvectors 
Orthogonal vector of the normal vector of a section plane in angular space  
Parameters of O  
Weight vector of the radial basis function network 
Input vector of the radial basis function network 
Output vector of the radial basis function network 
Centroid vector of the radial basis function network 
Number of the radial basis function units 
Standard deviation of the Gaussian function  
Data dimension of the radial basis function network 
A variable coefficient of the radial basis function network 
The maximum distance amongst the data 
Time constant 
Sampling time 

  
            
               



List of tables-1 
 

List of tables 
Chapter 1 

Table 1.1 Comparison of adaptive gait assistive method ............................................... 23 

Chapter 2 

Table 2.1 Specifications of NX610MA-PS25 ................................................................ 35 

Table 2.2 Specification of spring E659 .......................................................................... 35 

Table 2.3 Specifications of goniometer SG150 .............................................................. 35 

Table 2.4 Specifications of goniometer SG110 .............................................................. 36 

Table 2.5 Specification of Load cell LUX-B-200N-ID .................................................. 36 

Table 2.6 Specifications of S19CLN / 2BBMG / JR ...................................................... 37 

Table 2.7 Specifications of K800 Amplifier ................................................................... 37 

Table 2.8 Specification of instrumentation amplifiers WGA-670B ............................... 37 

Table 2.9 Specification of Raptor-E ............................................................................... 43 

Table 2.10 Force application strength and timing for each experimental condition ...... 47 

Chapter 3 

Table 3.1 Specification of force plate ............................................................................. 66 

Table 3.2 Contribution rate of eigenvectors ................................................................... 68 

Table 3.3 Mean error between the points ....................................................................... 68 



List of figures-1 
 

List of figures 
Chapter 1 

Figure 1.1 Demographics of Japan ................................................................................... 2 

Figure 1.2 The model of ICF ............................................................................................ 4 

Figure 1.3 Relationship between age and walking speed ................................................. 4 

Figure 1.4 Gait cycle ........................................................................................................ 6 

Figure 1.5 Diagram of the different components from cortex and basal ganglia to pinal 
central pattern generators  regulating basic aspects of locomotor  
propulsion ....................................................................................................... 8 

Figure 1.6 Relatiinship between energy cost and foot height ......................................... 10 

Figure 1.7 Walking Assist ................................................................................................ 11 

Figure 1.8 Walking asssit car ........................................................................................... 11 

Figure 1.9 PW-21 ............................................................................................................ 13 

Figure 1.10 Unrestrainat support robot........................................................................... 13 

Figure 1.11 Gait Trainer GTI .......................................................................................... 14 

Figure 1.12 4-axis redundant parallel robot.................................................................... 14 

Figure 1.13 Gait rehabilitation robot assisting pelvic motion ........................................ 14 

Figure 1.14 Lokomat ...................................................................................................... 15 

Figure 1.15 ALEX .......................................................................................................... 15 



List of figures-2 
 

Figure 1.16 LOPES ........................................................................................................ 16 

Figure 1.17 Gait assist robot ........................................................................................... 16 

Figure 1.18 HAL ............................................................................................................ 16 

Figure 1.19 LOPES Ⅱ ..................................................................................................... 17 

Figure 1.20 Welwalk WW-2000 ..................................................................................... 17 

Figure 1.21 RE-Gait ....................................................................................................... 17 

Figure 1.22 A soft exosuit developed by Harvard University. ........................................ 17 

Figure 1.23 Human-in-the-loop optimization of hip assistance with a soft exosuit ....... 20 

Figure 1.24 System overview of the proposal. ............................................................... 22 

Figure 1.25 Structure of the thesis. ................................................................................. 27 

 

Chapter 2 

Figure 2.1 Point and direction of force application ........................................................ 30 

Figure 2.2 Appearance of the cable-driven robot ........................................................... 32 

Figure 2.3 Mechanism of the cable-driven robot ........................................................... 32 

Figure 2.4 Design of the frame ....................................................................................... 33 

Figure 2.5 Pulley for supporting cable ........................................................................... 33 

Figure 2.6 Compesattion of cable length change with movable pulley ......................... 34 

Figure 2.7 System arrangement ...................................................................................... 34 



List of figures-3 
 

Figure 2.8 Timing detection method by deriving a plane ............................................... 40 

Figure 2.9 Block diagram of force control in the system ............................................... 41 

Figure 2.10 Raptor-E ...................................................................................................... 43 

Figure 2.11 Position of a marker .................................................................................... 43 

Figure 2.12 Time series of the polar angle, toe clearance, and joint angles ................... 44 

Figure 2.13 The force application timing in each condition ........................................... 46 

Figure 2.14 Normalized angles of leg joints when polar angle was 0 rad ...................... 47 

Figure 2.15 Comparison of angular range of knee flexion without and with frame ...... 48 

Figure 2.16 Change of toe trajectory in each condition ................................................. 49 

Figure 2.17 Rate of increase in toe clearance in each stride cycle ................................. 49 

Figure 2.18 The average of angles of leg joints in the swing phase for all participants 51 

Figure 2.19 The maximum knee flexion angle before and while force application  ..... 52 

Figure 2.20 The knee flexion angle when the gait phase was 90 % ............................... 52 

Figure 2.21 Change in minimum toe clearance. ............................................................. 53 

 

Chapter 3 

Figure 3.1 Overview of the algorithm for the detection of gait events .......................... 61 

Figure 3.2 Attachment placement of the goniometers .................................................... 61 

Figure 3.3 Distance from a sensed angular point Q to a projected point P .................... 64 



List of figures-4 
 

Figure 3.4 Experimental protocol ................................................................................... 66 

Figure 3.5 Force-plate method for detection of foot contact .......................................... 67 

Figure 3.6 Time-series floor force and gait phase detection of the proposed algorithm 69 

Figure 3.7 RMSE using a plane calculated in each gait datum ...................................... 69 

Figure 3.8 RMSE using a plane calculated by one gait datum ....................................... 70 

 

Chapter 4 

Figure 4.1 Overview of dataflow of proposed algorithm  ............................................. 77 

Figure 4.2 Extraction method of input values ................................................................ 78 

Figure 4.3 Gait phase detection result of extracting time points. ................................... 81 

Figure 4.4 Structure of radial basis function network (RBFN) ...................................... 81 

Figure 4.5 Experimental image of subjects walking on treadmill .................................. 83 

Figure 4.6 Normalization of toe clearance data .............................................................. 84 

Figure 4.7 Duration from extraction time to time of parameters of toe clearances ........ 85 

Figure 4.8 Example of calculated versus real MTC in training data .............................. 86 

Figure 4.9 Example RMSE between the predicted MTC and the true MTC for each 
number of RBFN units ................................................................................. 86 

Figure 4.10 Prediction result for maximum toe clearance (RMSE) ............................... 87 

Figure 4.11 Prediction result for minimum toe clearance (RMSE) ................................ 87 



List of figures-5 
 

Figure 4.12 Prediction result for maximum toe clearance (accuracy rate) ..................... 88 

Figure 4.13 Prediction result for minimum toe clearance (accuracy rate) ..................... 88 

Figure 4.14 The prediction result when the walking velocity changes (RMSE). ........... 89 

Figure 4.15 The prediction result when the walking velocity changes (Accuracy rate) 89 

 

Chapter 5 

Figure 5.1 Overview of the proposed system ................................................................. 95 

Figure 5.2 Intermittent force application method. .......................................................... 98 

Figure 5.3 The result of increase in the largest knee flexion angle between before    
and after the duration of the force application. ........................................... 102 

Figure 5.4 Increase in maximum knee flexion angle between before and during 
intermittent force application phase, where the increase of the angle after  
the duration of the force application was maximum in each subject.......... 103 

Figure 5.5 Increase in minimum toe clearance angle between before and during 
intermittent force application, where the increase of the angle after the 
duration of the force application was maximum in each subject ............... 103 

Figure 5.6 Minimum value of MTC ............................................................................. 106 

Figure 5.7 First quartile of MT ..................................................................................... 107 

Figure 5.8 Mean value of MTC .................................................................................... 107 

Figure 5.9 Third quartile of MTC. ................................................................................ 108 

Figure 5.10 Maximum value of MTC .......................................................................... 108 



List of figures-6 
 

Figure 5.11 Change in distribution of MTC ................................................................. 109 

 

Chapter 5 

Figure 6.1 Scenario of productization as a prevention training system ........................ 116 

 

 

 

 

 

 

 

 

 

 

 

 



1 

 

Chapter 1 Introduction 
 

 

1.1 Importance of health and longevity in a society 

1.1.1 Aging society 

Japan is a super-aged society in which people aged 65-year-old or more corresponds 

to over 25% of the total population [1.1].  This number is expected to increase to 38.4% 

by 2065. Figure 1.1 shows the transition of Japanese population from 1950 to 2018, and 

the forecasted transition from 2018 to 2065. The ratio of caregivers to care recipients is 

decreasing. Furthermore, increase in aging population causes increase in social security 

and medical expenses [1.2].  

Healthcare activity draws increasing attention regarding economic efficiency. The 

global market size of the healthcare industry is growing [1.3]. Currently, companies focus 

on health and productivity management to enhance the well-being of employees and 

improve the quality of work [1.4]. One-dollar investment leads to an investment return of 

approximately three dollars [1.5]. The Japanese government selected Japanese companies 

that engaged in an effort to promote health and productivity management and provided 

them with a health and productivity stock selection [1.4]. Additionally, the total amount 

of medical expenses can be reduced by promoting the healthcare activity, as 

approximately 30% of the expenses (the total is approximately 40 trillion yen) is related 

to lifestyle diseases [1.6]. 

Despite the promoted healthcare activity, the rate of unhealthy duration still does not 

decrease (keeps approximately 10%), while the average life expectancy has been 

increasing [1.7]. Therefore, reduction in the rate of unhealthy duration is the necessary 

challenge. In this respect, active aging is proposed to solve the social problems of the 

aging society.  
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Fig. 1.1 Demographics of Japan [1.1]. 
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According to the World Health Organization, active aging means the maximization of 

opportunities for maintaining health and participation in society to improve the quality of 

life (QOL) [1.8]. Generally, as we become older, there is a decline in motor ability and 

physiological functions [1.9]. Finally, care is required when the physical ability declines. 

To achieve active aging, it is important to implement initiatives that enable older people 

to live independently. In particular, walking is important for longevity because it is 

effective in maintaining health and avoiding health-related problems for older people. 

 

1.1.2 Disuse syndrome 

Disuse syndrome is one of the factors that inhibit active aging [1.10]. It refers to the 

decline in mind-body functions due to the decrease in the amount of activity in daily life. 

Specific symptoms of this syndrome are muscle and bone atrophy, reduced 

cardiopulmonary and digestive function, and decreased mental and cognitive functions. 

Older people fall into a vicious circle that causes the disuse syndrome because the decline 

in mind-body function with age causes a decrease in activity. The process of the vicious 

circle is explained by the life function that hierarchically evaluates the life represented by 

the International Classification of Functioning, Disability and Health (ICF) (Fig. 1.2)  

[1.11]. The vicious cycle of the syndrome constitutes (1) social participation, (2) life 

activity, and (3) mind-body function across all three levels. The decline in the mind-body 

function restricts daily activities, reduces the will and opportunity to participate in society, 

and reduces the frequency of activities in daily life, such as shopping and exercise, which 

results in “inactivation of life”. Moreover, further decline in mind and body function is 

induced. 

If the older people fall into the vicious circle of disuse syndrome, they will eventually 

be forced to stay bedridden. If one spends an entire day in bed in a state of absolute rest, 

the muscles of the entire body atrophy by 3% [1.12]. Resting due to illness also promotes 

the inactivation of life. Therefore, it is important to increase the activity opportunities of 

the older and prevent the disuse syndrome. The performance of aerobic exercises on a 

daily basis is effective for the prevention of the disuse syndrome. Walking is the most 





5 

 

The frequency of hospitalization after orthopedic surgery dramatically increases for 

people who are older than 50 years [1.14]. As shown in Fig. 1.3, decline in gait velocity 

tends to accelerate from 60–70 years [1.13]. Although the starting time of decline differs 

in individuals, it was reported that this decline starts in early adulthood and accelerates in 

or just after the end of middle age. Prevention treatment is beneficial even when people 

are middle aged, before being certified as Needed Support/Long-Term Care. 

 

1.1.3 Problems while walking 

In older people, the risk of falling during walking increases due to the deterioration 

of the mind and body functions with age. Falling is a serious problem for the older people, 

as approximately 80% of the causes of accidents in older people are due to falling, and 

approximately 20% of the older people fall annually [1.15]. Therefore, older people are 

more likely to stay home and walk less frequently due to the thought that they can live in 

relief at home, where they feel peace of mind, rather than going out with the risk of falling 

[1.16]. To encourage older people with impaired mental and physical functions to walk 

by themselves, it is necessary to reduce the risk of falling during walking. 

Falling is caused by an unexpected loss of balance due to tripping and slipping. 

Tripping, which is usually caused by unintentional contact of the swinging foot against 

an obstacle (e.g., carpet) is the main cause of falling [1.17, 1.18]. Therefore, it is necessary 

to prevent falling due to tripping. To promote active aging, it is important to develop 

equipment to support and train older people to walk with less risk of tripping. In the next 

section, the gait mechanism is explained to clarify how to control the motion to avoid 

tripping. 

 

1.2 Gait mechanism 

1.2.1 Gait phase 

Walking is a cyclical movement that moves the body forward by repeating a series of  
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1.2.2 Neuro-system for locomotion 

There are conscious and unconscious movements, and walking has both 

characteristics. In the central nervous system, upper centers located at the upper level, 

such as basal ganglia, have the function of consciously generating motion, and lower 

centers located in lower levels, such as brainstem and spinal cord, have the function of 

unconsciously moving (Fig. 1.5) [1.21-1.23]. Once humans start walking, they can 

continue walking without being conscious of the rhythmic movement of lower extremity 

muscles. Automated gait is realized because lower layers, such as the spinal cord among 

the central nervous system, considerably contribute to the gait generation [1.24]. Periodic 

movements of flexor and extensor muscles are performed by a central pattern generator 

(CPG) located in the spinal cord [1.25]. The midbrain gait evoked area, which is also in 

the brainstem of the lower center, determines the start and end of walking based on the 

commands from the upper center, and is important to issue an instruction to start the 

exercise [1.21]. In contrast, the upper center controls the activities of the lower centers 

that generate gait patterns based on senses and cognition, but does not control the walking 

rhythm and stride sequentially. The cerebellum acts in coordinated movements between 

limbs in real time based on information from the midbrain gait evoked areas and 

somatosensory feedback information from the limbs. The cerebellum also acts in 

constructing an internal model that calculates and outputs a movement command to a 

muscle so that it reaches the target lower-limb trajectory when feedforward control is 

performed on gait. The basal ganglia, which are multiple nuclei located near the center of 

the brain, output to the midbrain gait evoked areas and acts regulating gait expression and 

muscle tone. The cerebral cortex acts in planning and cognitive aspects of movement and 

contributes to the correction of movement by the appearance of walking and the feedback 

of external environmental information. As described, gait is not controlled by top-down 

with the upper central brain but controlled by the central nerves in each hierarchy. 
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Fig. 1.5 Diagram of the different components from cortex and basal ganglia to spinal central 
pattern generators (CPGs) regulating basic aspects of locomotor propulsion [1.22] 

 

The cerebellum can relearn the gait motion thorough repetitive training [1.26]. People 

adapt to external interference during walking as a reactive adjustment with lower level of 

the central nervous system. The reactive adjustment is not controlled by the cerebellum. 

The modified proprioceptive information of the legs is passed to the vermis of cerebellum 

via dorsal spinocerebellar tract [1.27]. The cerebellum restores the patterns of the 

movement as an internal model and modifies the ones generated by the spinal cord after 
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trial and error learning. There are two types of motor learning processes: explicit learning 

and implicit learning. The explicit learning is the learning with the cognitive feedback 

and working memory while the implicit learning is without cognitive process [1.28, 1.29]. 

For fast gait learning, the implicit learning is effective because it is processed by the 

cerebellum involved in predictive adjustment for gait adaptation [1.30].  

 

1.2.3 Human control strategy for avoiding tripping 

Causes of tripping can be divided into problems of cognitive and non-cognitive 

functions. Gait motion is controlled by changing joints kinematic pattern adapting to the 

environment. If there is an obstacle in front of walkers, they recognize it with visual 

information and raise their foot as a predictive adjustment [1.31]. People do not take the 

strategy of gait motion using excessive energy. As shown in Fig. 1.6, it takes excessive 

energy cost to lift the toe (foot scuff also takes excessive cost) [1.32]. Therefore, it is 

beneficial to avoid excessive lifting toe during walking in terms of energy efficiency. 

However, because it is difficult to perceive small steps (such as carpets or rugs) visually, 

it is necessary to be able to avoid tripping at small steps without recognition. In fact, the 

main situation of tripping is at home with carpets or rugs [1.33]. 

Proprioceptive information of end point is the most important for controlling the body 

[1.34, 1.35]. Minimum toe clearance (MTC) that is the minimum value of toe clearance 

at the mid-swing phase is a critical parameter related to tripping [1.17, 1.36-1.38]. Median 

of variability of MTC have been reported to be determined by individuals’ attitudes 

regarding the control of toe clearance [1.39]. Specifically, a low variability of MTC 

suggests better neuromuscular control of toe motion [1.37. 1.40, 1.41] while a lower 

average MTC reflects increased both attention and cognitive workload during the 

performance of the task [1.39, 1.42]. The MTC variability can be reduced by improving 

an ability to control the MTC. Even older people do not trip every gait cycle. The 

possibility of tripping increases when the toe approaches the ground or hidden small steps 

at an arbitrary point among gait cycles. Therefore, it is necessary to control MTC and 

avoid lowering it during walking for tripping avoidance. 
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Fig. 1.6 Relationship between energy cost and foot height [1.32]. 

 

In the next section, the development situation of robots that are not limited to fall 

prevention, in terms of promoting walking, and the issues involved in fall prevention are 

explained. 

 

1.3 Role of robotics for encouraging people to walk 

Many devices have been researched and developed for improving QOL. In particular, 

many walking assistance and gait training devices have been developed in order to realize 

independent walking for the older. Robotic technology is used to deal with the diversity 

of the surrounding environment when walking and individual differences in the 

psychosomatic function level of the older. In the following sections, the gait assistance 

and the gait training robots as well as the significance of the gait training robot for the 

older people and its current approach are explained.  

 



http://robotcare.jp/?page_id=273
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1.3.2 Classification of gait training robot 

Gait training robots have been designed to improve physical functions. By using 

robotic technology for gait training, load adjustment and leg trajectory generation can be 

realized in real time. The use of robotic technology is also beneficial to reduce the burden 

on the physical therapists and allows the user to exercise alone. Furthermore, the system 

was designed to improve user’s motivation and efficiency of gait training by providing 

virtual reality and gait information. The target of gait training robots includes not only 

older people but also postoperative and paralyzed patients. There are differences in the 

type and design of the device depending on the purpose. The movement of the gait 

training robots can be classified into robots that do and do not generate lower limb 

trajectories. Each feature is listed below. 

 

1.3.2.1 Non-assistance-based Gait Training Robot 

This type of gait training robots does not directly guide the lower limb trajectory for 

the user but supports the user to walk autonomously. A typical example of a gait training 

robot for older people is the 2-belt senior trainer PW-21 (Fig. 1.9) developed by Hitachi 

[1.50]. The left and right belts operate independently, and the load mode can be set 

separately for the left and right sides. In addition, it is possible to conduct a fall prevention 

training by suddenly starting and stopping one of the belts as a perturbation, leading to 

the acquisition of a gait with enhanced fall avoidance ability. An unconstrained gait 

training robot (Fig. 1.10) was developed by Ritsumeikan University for fully restraining 

people by controlling the fall of a pedestrian. It is possible to perform gait training without 

any changes [1.51]. 

Even though these robots do not interact with a human physically, it is possible to 

encourage people to perform actions adapting to perturbation that causes a fall or user's 

internal factors, and improve gait ability. However, the motion of the lower limb cannot 

be guided to obtain a gait with less risk of tripping. The tripping is caused by insufficient 

clearance from the ground, so motion guidance is required by a training robot that 

generates trajectories to change the motion of the lower limbs. 
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1.3.2.2 Assistance-based Gait Training Robot 

The robot attached to the lower limbs generates movements of the lower limb joints 

to improve the user's gait. In addition, by adjusting the amount of load on the lower limbs, 

it is possible to voluntarily encourage the lower limbs to move and improve kicking power 

and walking speed. The design of the gait training robot that generates the trajectory of 

the lower limbs can be divided into an end effector type and an exoskeleton type. As end 

effector type gait training robots, Gait Trainer GTI (Fig. 1.11) developed by Reha-Stim 

(Germany) [1.52], 4-axis redundant parallel robot (Fig. 1.12) [1.53], there is a pelvic 

holding robot developed by Waseda University [1.54]. Gait Trainer GTI controls the foot 

plate on which the foot is placed, thereby encouraging the movement of the foot in 

multiple gait phases [1.52]. A four-axis redundant parallel robot rehabilitates the 

movement of the ankle joint by moving a platform that fixes the tip of the foot with a 

pneumatic actuator [1.53]. In the pelvis holding robot (Fig. 1.13), the end effector holds 

the pelvis and simulates the pelvic handling operation performed by the physical therapist 

[1.54]. 

 

 
 

 Fig. 1.9 PW-21 [1.50]. Fig. 1.10 Unrestraint support robot [1.51]. 
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Fig. 1.11 Gait Trainer GTI [1.52]. Fig. 1.12 4-axis redundant parallel robot [1.53]. 

 

 

Fig. 1.13 Gait rehabilitation robot assisting pelvic motion [1.54]. 

 

Representative examples of exoskeleton-type gait training robots combined with 

treadmills are the Lokomat (Fig. 1.14) developed by Hokoma [1.55], ALEX developed 
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by the University of Delaware [1.56], and LOPES developed by the University of Twente 

[1.57]. Lokomat consists of a robotic device that generates a trajectory, a weight loader, 

and a treadmill [1.55]. The user is able to perform passive walking that automatically 

generates a gait with a robot brace attached to the lower limbs on a treadmill. ALEX (Fig. 

1.15) has a mechanism to move the hip and knee joints with linear actuators [1.56]. 

LOPES (Fig. 1.16) has a mechanism with two degrees of freedom in the hip joint and one 

degree of freedom in the knee joint, and it uses a series elastic element to mitigate 

obstruction of the user and the exoskeleton [1.57]. There is a walking support robot (Fig. 

1.17) developed by Yasukawa Electric as an exoskeleton robot combined with 

biofeedback [1.58]. The user's kicking force can be evaluated during walking by visual 

feedback of the plantar pressure. By presenting the target value to the user through 

feedback, the user can voluntarily exert a kicking force and improve the kicking motion 

of the ground. In addition, there is a robot suit HAL welfare (Fig. 1.18) developed by 

CYBERDYNE as a robot that uses biological signals [1.59]. The thigh and crus have 

drive, control, and sensor functions that support walking motion by measuring 

myoelectric and joint angles.  

 

  
Fig. 1.14 Lokomat [1.55]. Fig. 1.15 ALEX [1.56]. 
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Fig. 1.16 LOPES [1.57]. 

 

 
 

Fig. 1.17 Gait assist robot [1.58]. Fig. 1.18 HAL [1.59]. 

 
LOPES Ⅱ is the exoskeleton type robot applying an assistance of end-effector approach 
based on admittance control with the eight degrees of freedom [1.60]. Bio-inspired reflex-
based control of the LOPES Ⅱ resulted in reduction of metabolic cost and muscle 

http://www.nedo.go.jp/hyoukabu/articles/201012cyberdyne/img/p4_img1_l.jpg
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activation of humans (Fig. 1.19) [1.61]. Toyota Motor Corporation developed the novel 
gait training robot named Welwalk WW-2000, which assists the knee flexion and 
extension motion (Fig. 1.20) [1.62]. The RE-Gait [1.63] is an ankle motion assistive 
device for rehabilitation, which activates the muscles related to the knee and hip joints 
(Fig. 1.20). Because it is important for assistive robots not to inhibit the natural gait 
motion of humans, light-weight devices were developed, such as Harvard University’s 
soft exosuit, which is assisting ankle motion (Fig. 1.21) [1.64]. 
 

  

Fig. 1.19 LOPES Ⅱ [1.61] Fig. 1.20 Welwalk WW-2000 [1.62] 

 

 
 

Fig. 1.21 RE-Gait [1.63] Fig. 1.22 A soft exosuit developed by Harvard 
University [1.64]. 
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1.3.3 Control method 

In this section, the control method of the exoskeleton type of gait training robots that 

generates the trajectory of the lower limbs is explained. Although there are differences in 

the control methods required by the patient's gait function, the final goal of using a gait 

training robot is to enable the user to walk independently. Therefore, research on control 

methods has been developed to encourage more voluntary movements during gait training. 

Below, the author classifies the control methods of exoskeleton type gait training robots 

that generate trajectories of the lower limbs in an organized framework based on [1.65]. 

 

1.3.3.1 Positional control 

Positional control is a technique for controlling a gait training robot using the lower 

limb joint angle as a target value. The user of the robot passively walks with the lower 

limbs being continuously moved by the gait training robot [1.57, 1.66-1.68]. The main 

purpose is to provide training support for paralyzed patients in the early stages of 

rehabilitation. The robot ARTHuR generated a trajectory with “teach-and-replay” 

technique [1.66]. In LOPES, there is a method for controlling hemiplegic patients by 

position control that generates a trajectory that moves the lower limb of the paralyzed 

side from the trajectory of the lower side of the healthy side [1.57]. In trajectory 

generation by position control, the gait is fixed to the reference trajectory, and it is difficult 

to change the leg trajectory according to the ability of the user. In addition, it is difficult 

to encourage active walking because the user is forced to follow a fixed reference 

trajectory. 

 

1.3.3.2 Electromyography (EMG) based control 

EMG control is a control technique that moves the lower limb frame of the robot 

based on muscle activity [1.69-1.74]. The robot assists the movements based on detection 

of human’s intention by predicting how much the lower limbs move with myoelectric 

potential. HAL determines the assisting torque by estimating the torque that the wearer is 
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going to exert from the myoelectric potential [1.72]. If the wearer is a paralyzed patient, 

the pattern of the myoelectric potential cannot be measured normally; thus, the 

myoelectric potential is used as a trigger to generate a pre-programmed action. Daniel et 

al. at the University of Michigan developed a control method that drives a pneumatic 

actuator by performing proportional control within the upper and lower limits set in 

advance using myoelectric potential as feedback information [1.73]. In EMG strategy, 

there is still a problem in obtaining an accurate control signal due to the displacement of 

the position where the electrode is attached and the influence of the different target 

muscles. 

 

1.3.3.3 Impedance control 

Impedance control in a gait training robot adjusts the lower limb joint angle, the 

interaction force generated between a person and the robot, and the lower limb trajectory 

by controlling its impedance as a target value [1.57, 1.75-1.79]. The interaction force 

generated between a person and a robot is the torque that the robot applies to the human 

joint or the torque that occurs when the person resists the movement of the robot. The 

larger the interaction force, the higher the difference between the active human walking 

motion and the robot motion. In impedance control, as the deviation from the trajectory 

generated by the robot increases, the guidance force to the trajectory increases. As the 

degree to which the force to guide the trajectory increases can be adjusted, by using 

impedance control, Lokomat and LOPES allow the patient to walk with a gait that varies 

from the reference trajectory [1.78, 1.79]. However, since there are individual differences 

in the appropriate impedance value, there remains a problem in encouraging active 

walking. 

 

(4) Adaptive control 

Adaptive control is a control method in which the robot adapts to human movements 

and changes control parameters for assistance. In adaptive control, it is expected to  
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 Fig. 1.23 Human-in-the-loop optimization of hip assistance with a soft exosuit [1.89]. 

 

increase the efficiency of gait training to encourage people to actively participate in 

training. Adaptive method is realized based on evaluation of human motion or bio signals. 

The parameter of impedance controller was adjusted based on EMG or interaction force 

between human and machine in previous researches. In order to increase patient’s 

motivation, providing assistance only when needed is required comparing to the strategy 

of imposing an inflexible control [1.65]. Assistance-as-needed control strategy of the gait-

training robots is being actively studied to adjust the assistance level or mechanical 

impedance modes based on a human ability [1.56, 1.61, 1.80-1.85]. Control of the 

interaction force between a robot and human allows the user to walk in a different manner 

from the desired predetermined trajectory using force-field control. As the trajectory-

based control is mainly targeted at severely affected patients, multiple degrees of freedom 

are used to recover motor function for joint-angular trajectory generation. In a study 

[1.86], the assistance-as-needed strategy was performed by reducing the assistance force 

when the patient’s tracking errors were small. This strategy could achieve both assistance 
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to help the patient complete movement tasks and optimization of compliance to allow the 

patients to actively move [1.65]. Duschau-Wicke et al. proposed a method in which the 

robot does not assist when walking within a certain error range with respect to the 

reference trajectory, and assists when it deviates from the error range [1.79]. Krishnan et 

al. also reported that walking time and other parameters related to walking ability were 

improved by shortening the time to guide the robot to the trajectory compared to the case 

without shortening [1.87]. 

Another adaptive approach of assistive technology is torque optimization using a 

cable-driven robot based on the estimation of metabolic cost for improving human’s 

energy efficiency while walking [1.88, 1.89], as shown in Fig. 1.23. The cable-driven 

mechanism is suitable mainly for people who can walk by themselves. The conventional 

algorithms are adaptive based on human ability by evaluating the state after human action.  

Conversely, assistance-based methods that decide the robotic parameters by 

predicting the gait motion beforehand have not yet been established. Although the bio-

feedback method could increase mean MTC [1.90], it could not modify MTC distribution 

(increase in only lower values of MTC). The robot based on an evaluation of a human 

motion after human action cannot modify the motion in real-time. Prediction of MTC is 

important for modifying the toe motion in real-time to encourage people to walk with 

more precise MTC control. Therefore, an assistance-as-needed approach based on MTC 

prediction is necessary.  

 

1.4 Objective of the Thesis 

The objective of this thesis is presenting a control system of gait training robot with 

intermittent force application based on prediction of MTC in order to improve human toe 

control ability during walking. Our hypothesis is that robotic assistance along with the 

MTC prediction algorithm can modify human control to inhibit the reduction of MTC. 

No research has yet investigated the effect of robotic assistance using MTC prediction on 

the modification of MTC control. We assumed that people could modify their MTC 
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Table 1.1 Comparison of adaptive gait assistive methods. 

 Exoskeleton Soft exosuit This research 

Objective 
Improve ability of 
motor generation 

Minimize human 
energy cost 

Improve ability of 
toe control 

Assistive method 
Impedance control 
based on reference 
angular trajectory 

Apply wire tensile 
force 

Apply wire tensile 
force 

Measured bio-signal Angles, EMG Indirect calorimeter Angles 

Adaptation method 
Adjust interaction 
force to guide the 

reference trajectory 

Evaluation of 
metabolic cost 

Adjust an assistance 
timing based on  

toe height 

Final target 
Affected patients 
(Rehabilitation) 

Able-bodied people 
Able-bodied older 

people 

 

humans in walking, detect gait phase, predict MTC, and evaluate the after-effect. 

The novelty of this study is the establishment of an intermittent force application 

method of gait training robot based on prediction of MTC and modification of the MTC 

distribution. The proposed system can allow people to freely move and can be combined 

with the training system to reproduce environments such as obstacles. Moreover, the 

proposed prediction-based assistance method can be used for other training systems to 

improve the precision of the motion and improve the control ability in the future. 

 

1.5 Structure of this thesis 

This thesis consists of 6 chapters (Fig. 1.25). 

⚫  Chapter 1 

This chapter introduces the background of the thesis in terms of aged-society, 

importance of walking, and state-of-the-art of robotic technologies encouraging 

people to walk. Tripping is one of the main causes of falling that seriously inhibit 

walking especially for older people. MTC control that inhibits it from lowering is 



24 

 

important to avoid tripping during walking. However, there is no study for gait 

training robot to improve ability of MTC control. Therefore, this study aims at 

establishing the control strategy of assistance as needed based on MTC value. Angular 

information was beneficial for the physical human-robot interaction. Therefore, the 

author proposed the system using only angles as human biological information to 

assist human, detect gait phase, predict MTC, and evaluate after-effect. 

⚫  Chapter 2 

Hardware system using cable-driven system is explained in this chapter. The system 

was designed to switch force application and non-force application modes. Moreover, 

the system aims at increasing MTC when the force is applied. Cable-driven system 

was applied because the cable-tension control can achieve both the force and non-

force applications. To establish the cable-driven system to assist human toe motion as 

needed, it was needed to analyze the effect of force application timings on the changes 

of the toe trajectory and the lower limb joint angles. The force was applied to a part 

of the shank and the force direction was longitudinal along the shank toward the knee. 

The author investigated the effect of force application timing on toe trajectories and 

the angles of the lower-limb joints in the experiments in which the force was applied 

to participants while they walked. The application of the force when participants lifted 

their toe from the ground and maintained knee flexion just after toe-off, increased the 

maximum toe clearance. The toe clearance in the later swing phase increased when 

the force was applied at toe-off or after toe-off because of a change in the ratio of the 

hip angle to the knee angle. 

⚫  Chapter 3 

Gait event detection algorithm is explained in this chapter. For precise timing control 

of force application and prediction of MTC, a more precise algorithm of gait event 

detection than the method mentioned in chapter 2 was needed. The author focused on 

the plantar structure between lower limb joint angles that are different among phases. 

The proposal is a novel algorithm for the gait event detection using the inter-joint 

coordination of the hip, knee, and ankle joints that have a lower-dimensional structure. 
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The proposed algorithm derives the four planes in the angular space and finds the 

switching points of the planes. The results of the experiment involving seven subjects 

show that the change in the planes reflected in the change in gait phases. Moreover, 

although the data were calculated offline, the results show that the heel contact and 

toe-off could be detected as soon as the angles were sensed once the planes were 

derived. 

⚫  Chapter 4 

Prediction algorithm of MTC is explained in this chapter. The author proposed a novel 

method for predicting toe clearance that uses a radial basis function network. The input 

data were the angles, angular velocities, and angular accelerations of the hip, knee, 

and ankle joints in the sagittal plane at toe-off. Toe-off was detected by the algorithm 

based on the proposal in Chapter 3. In the experiments, seven subjects walked on a 

treadmill for 360 s. The radial basis function network was trained with gait data 

ranging from 20 to 200 data points and tested with 100 data points. The root mean 

square error between the true and predicted values was 3.28 mm for the maximum toe 

clearance in the earlier swing phase and 2.30 mm for the minimum toe clearance MTC 

in the later swing phase. Moreover, using gait data of other five subjects, the root mean 

square error between the true and predicted values was 4.04 mm for the maximum toe 

clearance and 2.88 mm for the MTC when the walking velocity changed. This 

provided higher prediction accuracy compared with existing methods. The proposed 

algorithm used the information of joint movements at the start of the swing phase and 

could predict both the future maximum and minimum toe clearances within the same 

swing phase. 

⚫  Chapter 5 

Effect of prediction-based assistance on MTC distribution is explained in this chapter. 

In this thesis, the author implemented the gait event detection algorithm and the MTC 

prediction algorithm on the developed hardware system to encourage people to walk 

by avoiding lowering the MTC reduction. Eight participants were asked to walk on a 

treadmill, and the effect of the system on MTC was evaluated. The MTC data before, 
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during, and after the assistance phase were analyzed for 120 s. The results showed that 

the minimum and first quartile values of MTC could be increased during and after the 

assistance phase. 

⚫  Chapter 6 

In this chapter, the summary and limitations of this study are explained, and research 

scope is proposed. 
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  Fig. 1.25 Structure of the thesis. 
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Chapter 2 Gait Assistance Method 
 

 

2.1 Background 

The appropriate timings of assistance and non-assistance are unclear for assisting toe 

swing motion. Joint motions are controlled during walking and their combination 

generates the toe trajectory. It is necessary to analyze the changes of the toe trajectory and 

the lower limb joint angles for determining the force application timing. 

In this chapter, the author investigated the effect of timing of the force application on 

the increase of toe clearance. The toe clearance in the entire swing phase was analyzed 

when the force was applied in some timings. Moreover, the changes in joint angles of hip, 

knee, and ankle joints were analyzed because these joints generate the toe swing motion 

[2.1]. The author aimed at ensuring one degree of freedom of the force application to 

simplify the robotic system and reduce intervention. 

Joint motions at the start of the swing phase are the knee joint flexion and ankle joint 

plantar flexion that lift the shank and foot. The foot is moved forward by the hip joint that 

maintains flexion during the swing phase. The toe clearance is ensured by the knee joint 

flexion in the early swing phase. The knee joint extends from the middle swing phase to 

prepare foot contact on the ground. The knee joint flexion is generated by the hamstring 

muscle contraction and the shank acceleration. The toe trajectory in the swing phase has 

maximum and minimum values. 

The hypothesis is that the application of the fore at toe-off is effective for increasing 

MTC. The force is applied to assist the shank movement and generate mainly knee flexion 

torque, because the shank movement has the largest contribution to ensuring the toe 

clearance [2.2]. The author assumed that the increased knee flexion angle in the early 

swing phase causes the increase in maximum toe clearance. If the maximum knee flexion 

angle increases, the knee flexion angle during knee extension increases, although the knee 
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maximum extension angle does not change. The author assumed that the increased knee 

flexion angle in the late swing phase (during knee extension) causes the increase in MTC 

and does not disturb the knee extension. 

 

2.2 Robotic system 

2.2.1 Design and configuration 

A cable-driven system was designed to apply the force application to the human. The 

point where the force was applied was a middle part of the shank. The direction of the 

applied force was longitudinal along the shank toward the knee joint, as shown in Fig. 

2.1. The knee assistive flexion torque was generated by pulling the cable as the product 

of the cable tension and moment arm. This force causes the additional acceleration of the 

shank and the assistive effect on the thigh that assists hip flexion motion. The applied 

knee flexion torque is:  

τknee = FR, (2.1) 

where τknee indicates the applied knee flexion torque, F indicates the force strength, and 

R indicates a moment arm. The force is transmitted to the thigh and moves the thigh 

because the force direction from the point of force application at the shank was parallel 

with the longitudinal direction of the shank. This force can generate the hip flexion torque 

as: 

τhip = FL1sinθknee, (2.2) 

where τhip is the applied hip flexion torque that is generated by the force application, L1 is 

the length of thigh (from the knee joint to the hip joint), and θknee is the angle between the 

shank and the thigh in sagittal plane. 
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movable pulley was located between the frame and the motor and compensated the length 

of the cable. The movable pulley was used to reduce the cable tension as much as possible 

when the motor was not activated (Fig. 2.6). In preliminary experiment, the author 

confirmed that cable length varied within 0.10 m during walking. Therefore, the range of 

the movable pulley was designed to be 0.05 m considering the change in the cable length 

as a result of movement of the movable pulley as shown in Fig. 2.3. A servomotor 

(S03N/2BBMG, Grand Wing Servo-Tech Co., Ltd., Taipei, Taiwan) and a rachet gear 

were used as a locking system for the movable pully in case where the cable was winded. 

A timing belt which was connected with a plate supporting the movable pulley rotated the 

rachet gear corresponding to its movement. The robot controlled the servomotor 

rotational position to move the pawl of the ratchet for locking and unlocking the movable 

pulley movement. A pulley cover was used to avoid the fall of the cable from the pulley. 

The Windows system was included for force control the tensile of the cable.  

Figure 2.7 shows the overall hardware configuration of the robotic control system. 

The system consisted of AC motor, motor driver, load cell, load cell conditioner, 

goniometer, goniometer amplifier, moving pulley stop mechanism, Arudino, analog I / O 

board, counter board, and computer. The main controller was the computer of the 

Windows system. The counter board (CNT-3208M-PE, CONTEC, Osaka, Japan) and the 

analog I/O board (ADA16-32/2(PCI)F, CONTEC, Osaka, Japan) were connected to the 

main controller via the PCI Express bus. The goniometer and load cell values were 

processed by the analog I/O boards. The goniometer data were transmitted via K800 

Amplifier. The tensile force was sensed by the load cell and committed to the controller 

via an amplifier (WGA-670B, Kyowa, Tokyo, Japan). The load cell had output with a 

voltage of 0 [V] to 10 [V] in response to an input of 0 [N] to 20 [N]. The conversion from 

the voltage V of the goniometer to the angle θ is given by the flowing formula:  

 

θ = 90V – 180, (2.3) 
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Table 2.1 Specifications of NX610MA-PS25. 

Item Characteristic value 

Type AC servo motor 

Declared torque     N・m  6.44 

Item Characteristic value 

Max rotational speed     r/min  3000 

Rated current            A  2.9 

Power supply           V  100-115 

Reduction ratio 25 

Backlash        arcmin 15 

Declared power       W  100 

Moment of inertia    kg・m2  0.0436 

Detector Absolute encoder 20 bits per rotation 

Mass           Kg  1.55 

Resolution 100~100000 (default 1000) 

 
Table 2.2 Specification of spring E659. 

Item Characteristic value 

Name E659 

Material SUS304WPB 

Outside diameter       mm 8 

Wire diameter        mm 0.9 

Free length          mm 50.1 

Total number of turns 39.5 

 Spring constant       N/mm 0.393 

Length during usage     mm 67.8 

Allowable length      mm 85.3 

Max load           N 18.34 

Initial tension          N 4.511 

 
Table 2.3 Specifications of goniometer SG150 (No.1). 

Item Characteristic value 

   Accuracy            ° ± 2 

  Measuring range         ° ± 150 
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Table 2.3 Specifications of goniometer SG150 (No.2). 

Weight   g 17 

  Input resistance   kΩ 0.23 

Operating temperature range ℃ 10–40 

Table 2.4 Specifications of goniometer SG110. 

Item Characteristic value 

  Accuracy ° ± 2 

Measuring range ° ± 150 

  Weight g 19 

  Input resistance kΩ 0.23 

Operating temperature range ℃ 10–40 

Table 2.5 Specification of Load cell LUX-B-200N-ID. 

Item Characteristic value 

Rated capacity  N ± 200N 

Nonlinearity Within ± 0.15% 

Hysteresis Within ± 0.15% 

Repeatability Within 0.05% 

Rated output mV/V ± 0.9 

Safe temperature range ℃ -20–80 

Compensated temperature range ℃ -10–70 

Temperature effect on zero balance  /℃ Within ± 0.03% 

Temperature effect on output /℃ Within ± 0.005% 

Safe excitation voltage     V 10 

Recommended excitation voltage V 1–5 

Input resistance 375 Ω ± 1.5% 

Output resistance 350 Ω ± 1% 

Safe overload 150% 

Natural frequency KHz 14 

Recommended tightening torque Nm 3 

Weight g 50 

Material SUS metallic finish 



37 

 

Table 2.6 Specifications of S19CLN / 2BBMG / JR. 

Item Characteristic value 

Connector Type JR 

Torque      Nm (4.8 V) 6 

Speed           s/60° 0.1 

 
Table 2.7 Specifications of K800 Amplifier. 

Item Characteristic value 

Dimensions              mm Subject unit: 100 x 50 x 25 
Base unit: 180 x 170 x 48 

Mass                   g Subject unit: 150 
Base unit: 550 

Analogue channels 8 

 Digital channels 5 

Communication from subject unit to base unit RS 422 

Input voltage differential bridge mode  mV  ± 12 

Input voltage single ended high level mode mV     ± 4 

Output (full scale)            V   Analog +0.0 to +4.0 

Analog channel input impedance   M Ohm  1 

Power supply per channel         V   + 5.0 V 

Power supply per channel tolerance    %   ± 1 

Accuracy                %   Better than ± 0.5 

Maximum common node         V   +3.5 to -2.5  

General bandwidth         KHz  5  

 
Table 2.8 Specification of instrumentation amplifiers WGA-670B (No.1). 

Item Characteristic value 

Applicable transducers Strain gage transducers 
Applicable bridge resistance    Ω  87.5 to 10000 

Measuring range     mV/V  ± 3.2 
Bridge excitation         V  10 

Digital zero adjustment range Same as measuring range 
Display ± 19999 

Update        times/s  15.6 

Sampling rate     times/s  2000 
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Table 2.8 Specification of instrumentation amplifiers WGA-670B (No.2). 

Nonlinearity Within ± 0.03% 

Zero stability    μVRTI/℃  ± 0.25 

Sensitivity stability       /℃  ± 0.01% 

Conversion rate   times/s 500 

Setting parameters Indication for 10 V output (± 19999) 

Operating temperature/humidity range ℃ -10 to 50 

Power supply          V  AC 100–240 ± 10% (50/60 Hz) 

 

2.2.2 Force application method 

The positional control of the motor position was performed for controlling the 

applying force of the cable-driven robot. Initially, the robot detects the force application 

timing. It was used angular information for the timing detection as an experimental 

protocol. After detecting the timing, the robot activated the motor system and applied the 

force to a human for a short time.  

 

2.2.1 Decision of assistance timing 

The timing was detected based on a phase of the angular trajectory as shown in Fig. 

2.8. The phase of the trajectory in an angular space of three joint angles could be derived 

by watching a plane from one point of view. If the angle information is used for detection 

of robotic assistance, the change of gait can be easily and automatically analyzed because 

the angle change reflects the gait change. Although the joint movement is cyclical during 

walking, it is difficult to detect the maximum and minimum values of angle parameters 

in real-time because of the noise and variability of the angle range between gait cycles. 

In contrast, the angular space has a lower-dimensional structure and the angular trajectory 

is on planes [2.3]. Polar angle of the angular trajectory can be derived as the phase if the 

initial point is decided after projecting angular point onto the plane.  

To calculate the polar angle, the basis vectors and mean angle data of the plane are 

needed. The coordinates P on the plane are expressed by 
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P =α1w1 +α2w2 + R, (2.4) 

where w1 and w2 indicate basis vectors, α1 and α2 are coefficients of the basis vectors, 

and R indicates the coordinates of the mean angle data in the swing phase. The basis 

vectors cab be derived using principal component analysis. 

The vectors from the coordinates before projection to the coordinates after projection 

and the two eigenvectors w1 and w2 are perpendicular to each other. Therefore, α and β 

were calculated using the inner product as 

α1 = Q w1 − Gw1, 

α2= Q w2 − G w2,   

(2.5) 

(2.6) 

where Q denotes the coordinates of the lower-limb joint angle space before projection. 

Parts of angular data were extracted based on the hip joint angle. The planar structure 

is different between the swing and stance phases [2.4]. Therefore, a part of data were 

extracted as the swing phase data if the hip joint is flexing angle changed from a minimum 

flexion angle to a maximum flexion angle while a part of data were extracted as the stance 

phase data if the hip joint is extending from a maximum flexion angle to a minimum 

flexion angle. First the switching point from the plane related to the stance phase to the 

plane related to the swing phase was derived by detecting time point where the hip joint 

started flexing and finding the point where the sum of the projection distances from a 

sensed angular point to points projected onto two planes related to the swing and stance 

phases was minimum because the two planes intersect at the points. Next, a polar angle 

of the joint’s angular trajectory which was projected onto the plane of the swing phase 

was calculated. The formula to calculate polar angle φ was  

φ = cos-1 ( (U - R)∙(S - R)
‖U∙R‖‖S∙R‖

) (2.7) 

 

where S indicates a switching point from the stance phase to the swing phase and U 

indicates the point of sensed angles in real time. 
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slower than the usual walking speed in young people, the experimental force application 

could be performed safely. To investigate the effect of timing difference of the force 

application, there was a possibility that the applied force would disturb human walking. 

Five healthy adults (one female and four males; age 24 ± 2 years, height 166 ± 15 cm, 

body weight 56 ± 12 kg) who have no neurological injuries or gait disorders were 

recruited in this experiment. Function of adapting to a new gait pattern in older people is 

same as younger people [2.5]. Therefore, younger people were recruited to decrease the 

risk of falling and to conduct many trials during experiment. This experiment follows the 

principles of the institutional review board of Waseda University. The author gave the 

participants detailed the experimental objectives and explained that they were able to 

withdraw from the experiment whenever they desired. The experiment was conducted 

after the obtainment of their consents. 

Evaluation of gait change was made with the goniometers and a motion capture 

system (Raptor-E; Motion Analysis, Santa Rosa, CA, USA) that could measure the toe 

clearance. A marker was attached on the first metatarsophalangeal joint of the right foot. 

Fig. 2.10 shows the Raptor-E and Fig. 2.11 shows the position of marker. Table 2.9 shows 

the specification of the Raptor-E. Initially, participants walked without frame and with 

goniometers for 60 s for system check and practice the walking on the treadmill. After the 

frame was attached to the participants, they walked without force application for 30 s to 

reach a steady state and calculate the planes of the angular space; then, the experimental 

measurement started. The participants walked for 30 s five times in each experimental 

condition: the first 15 s in non-force-application phase and the last 15 s in force-

application phase. Total number of experimental conditions was four, and then 20 trials 

were performed for each participant. The trajectory and joint angles were compared 

between non-force-application and force-application phases. Gait data of 250 gait cycles 

were collected in total for non-force-application and force-application phases, 

respectively. To investigate only the effect of timings to apply the force, the force 

parameters were constant. The desired force value was 16 N and the motor activation 

duration was 0.18 s because we could observe if these parameters would affect human 

gait in the pre-experiment. The rising time of force application was approximately 0.10 s. 
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Table 2.9 Specifications of Raptor-E 

CMOS sensor pixel 1.3 million 

Number 8 

Markers Reflective marker 

Analog input channel   ch 64 (Force plate 48, others 16) 

Sampling frequency    Hz 120 

 

 

 

Fig. 2.10 Raptor-E. Fig. 2.11 Position of a marker. 

 

2.3.2 Force application timings 

The polar angle was calculated with the angles of hip, knee, and ankle joints. The 

polar angle varies periodically within the range of 0 to π rad. Figure 2.12 shows the time-

series change of polar angles and relation of angles and toe clearance in one gait cycle 

when the subjects walked on the treadmill at 2.5 km/h in a preliminary experiment. The 

polar angle is a minimum (i.e., 0 rad) before toe-off and a maximum (i.e., π rad) before 

the time point of minimum toe clearance. The positive direction of the hip joint angle, 

knee joint angle, and ankle joint angle are the extension, bending, and the dorsiflexion 

directions, respectively. The hip joint angle was in flexion when the phase increased from 

about 0.2 rad to the maximum value (about 3.0 rad) and then decreased to about 2.4 rad. 
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ratio of the hip flexion angle at the time when the force applied to the maximum flexion 

angle was calculated to evaluate the difference in the force application timings. Moreover, 

the ratio of knee flexion angle at the time when the force applied to the maximum flexion 

angle was calculated to evaluate the difference in the force application timings. The 

significance of the force strength and the timing of force application was investigated. In 

this experiment, the significance level was set to 5%. 

It was analyzed how the attachment of the robot affects the human motion, using 40 

gait data for each participant. The range of knee joint angle with the frame was compared 

to the range of the knee joint without the frame because the participants wore the frame 

with their knee joint. The t-test to determine the significance of the range of knee angle 

with and without frame was conducted. 

Moreover, the change in toe trajectory during the swing phase in each experimental 

condition was analyzed using approximately 50 gait data. Averages of the toe clearance 

in gait phases were calculated for evaluation of toe trajectory change. The percentage of 

gait cycle was derived based on the minimum value of the toe clearance in the stance 

phase just before toe-off. The effect of the force application on the toe trajectory was 

analyzed by deriving the difference between maximum and minimum toe clearance 

without and with force application. The toe clearance when the gait phase was between 

72% and 92% showed a change of toe trajectory in the swing phase after the toe was in 

the highest position. 

The change in the lower limb joint (hip, knee, and ankle joints) angles was derived 

because these parameters generated the toe motion. The hip and knee joint flexion angles 

and ankle joint dorsiflexion angle were normalized to analyze the relationship between 

the joints. The hip maximum flexion and knee minimum flexion angles and the ankle 

minimum dorsiflexion angles were subscribed from these angles, and divided by the 

maximum value in the phase before the force application. A total of 50 data were used for 

deriving the average of the normalized angle in each gait phase. Particularly, the change 

of the knee flexion angle was analyzed because the knee joint flexion affects the toe height. 

The knee maximum flexion angle that is related to the highest toe position in the swing 
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phase was compared between the non-force-application and force-application phases. 

Furthermore, the change in the knee flexion angle when the gait phase was 90% was 

evaluated to consider the joint change related to MTC. The t-test was conducted to 

determine significant differences between the knee flexion angles with and without the 

force application when the knee angle was the maximum and the gait phase was 90%. 

 

2.4 Experimental results in young people 

2.4.1 Force application 

Fig. 2.13 indicates the relationship between force application timing and the knee 

flexion angle in each experimental condition. Table 2.10 indicates the average and 

variance of parameters related to the force application in each condition. The maximum 

force strength was not significantly different between the experimental conditions. The 

normalized angle of the hip, knee and ankle joints when the polar angle was 0 rad were 

shown in Fig. 2.14. The joint angles were normalized because the normalization of 

 

  
Fig. 2.13 Force application timing in each condition. 
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Table 2.10 Force application strength and timing for each experimental condition. 

 Condition 1 Condition 2 Condition 3 Condition 4 

Average of the maximum force [N] 16.8 16.0 15.9 16.2 

Standard deviation of the maximum 
force [N] 

2.60 2.36 1.83 2.05 

Normalized hip flexion angle to 
maximum flexion angle [%] 90.6 61.5 41.7 35.5 

Standard deviation of normalized 
hip flexion angle [%] 11.8 9.42 12.8 16.1 

Normalized knee flexion angle to 
maximum flexion angle [%] 21.8 73.6 87.0 90.2 

Standard deviation of normalized 
knee flexion angle [%] 9.26 17.0 18.4 12.0 

 

 
Fig. 2.14 Normalized angles of leg joints when the polar angle was 0 rad. 

 

angles could decrease individual differences about the range of the joint angles and 

indicate the phase of joints movements. The definition of normalization was as follows: 

the maximum hip joint extension, knee joint flexion, and ankle joint dorsiflexion angles 

were 100 % and the maximum hip joint flexion, knee joint extension, and ankle joint 

plantar flexion angles were 0 %. The difference of the force application timing 

(normalized knee joint angle when the force was applied) among experimental conditions 

1, 2, and 3 was significant (p<0.05). In contrast, the timing was not significantly different 

between the conditions 3 and 4. 
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(a) Condition1, force application when starting knee 

flexion before toe-off. 
(b) Condition 2, force application when lifting the 

toe from the ground. 

  
(c) Condition 3, force application when maintaining 

knee flexion after toe-off. 
(d) Condition 4, force application when finishing 

knee flexion after toe-off. 
Fig. 2.16 Change of toe trajectory in each condition. 

 

  

 
 

Fig. 2.17 Rate of increase in toe clearance in each stride cycle. 
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of the gait cycle. No significant change in toe clearance was confirmed for condition 1. 

For conditions 2 and 3, the toe clearance from the maximum to the minimum value 

significantly increased. The minimum toe clearance also was higher in condition 4 when 

the gait phase was approximately 88 %. 

Fig. 2.17 indicates the average change in the mean toe clearance in each percentage 

of the gait cycle that was derived from all data. Blue, orange, green, and yellow bars 

respectively show the increases in toe clearance caused by the force application in each 

condition; condition 1, time when the knee joint started flexing in pre-swing phase; 

condition 2, time when the toe was lifted by knee flexion motion; condition 3: time when 

the knee joint was flexing after toe-off; and condition 4: time when knee joint was about 

to finish flexing. The error bar shows the standard deviation of the toe clearance in each 

the percentage of the gait cycle. The increase of toe clearance was highest before 76% of 

the gait cycle when the force application timing was around toe-off. The increase of toe 

clearance was highest at approximately 85% of the gait cycle when the force application 

timing was after toe-off. 

 

2.4.4 Change in the leg joint angles 

Fig. 2.18 indicates mean angles in each the percentage of the gait cycle that were 

derived by data of all participant with and without force application. The positive 

direction of the hip joint, the knee joint, and the ankle joint angles is the extension, the 

bending, and the dorsiflexion directions, respectively. The mean knee joint flexion angles 

in more than 80% of the gait phase (after the knee joint flexion angle was maximum) 

when the force was applied increased from when the force was not applied for conditions 

2, 3, and 4. For all conditions, the maximum values of the knee joint flexion angle when 

the force was applied significantly rose (p<0.05) from when the force was not applied, as 

shown in Fig. 2.19. For conditions 2, 3, and 4, the knee joint flexion angle when the force 

was applied significantly rose (p<0.05) when the force was not applied in later swing 

phase (the percentage of the gait phase was approximately 90 %), as shown in Fig. 2.20. 
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(a) Condition1, force application when starting knee 

flexion before toe-off. 
(b) Condition 2, force application when lifting the 

toe from the ground. 

  
(c) Condition 3, force application when maintaining 

knee flexion after toe-off. 
(d) Condition 4, force application when finishing 

knee flexion after toe-off. 
Fig. 2.18 The average of angles of leg joints in the swing phase for all participants. 

 

2.5. Experiment in older people 

2.5.1 Protocol 

The participants were three healthy older people (two male and one female; age 65 ± 

2 years, body weight 62 ± 2 kg, height 1.64 ± 0.07 cm) having no neurological injuries or 

gait disorders. This experiment follows the principles of the institutional review board of 

Waseda University. The author gave the participants detailed the experimental objectives 

and explained that they were able to withdraw from the experiment whenever they desired. 

The experiment was conducted after the obtainment of their consents. 
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After the explanation, each subject wore the harness and robot. The goniometers were 

attached to the subjects using elastic therapeutic tape. In the experiment, the subjects 

walked on a treadmill at 2.5 km/h. Before we started obtaining measurements, the subjects 

walked on the treadmill for 10 s to reach a steady state. The walking data of 50 gait cycles 

with and without force application for each subject were compared. For the investigation 

in the experiment, the desired value of the force was 16 N, because in a preliminary 

experiment at this value the author was able to sense a change in the knee flexion angle. 

The subjects continued to walk throughout two periods. In the first period, during which 

the subjects walked without the robot’s intervention, the robot recorded the angle data of 

the lower limb joints and, at the end of the period, calculated the planes of the swing and 

stance phases using principal component analysis. 

The minimum toe clearance change in the swing phase to investigate the effect of the 

force application on the toe clearance was evaluated. The number of samples in each 

period was approximately 50 for each subject. 

 

 

Fig. 2.21 Change in minimum toe clearance. The p value indicates the probability that two data 

groups are the same. The error bars indicate the standard deviation. 
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2.5.2 Result in older people 

Fig. 2.21 shows the change in the minimum toe clearance. In all subjects, the 

minimum toe clearance significantly increased during the force application. 

 

2.7 Discussion 

The more the knee joint flexes in the early swing phase, the higher the toe position is 

in that phase. As shown in Figs. 2.16 and 2.18, the maximum knee flexion angle and 

maximum toe clearance increased by the assistance when the gait phase was 

approximately 78 % in conditions where the force was applied around and after toe-off 

when people kept flexing the knee joint. The author confirmed that the increase in the 

maximum knee flexion angle caused the increase of the maximum toe clearance in the 

swing phase. Because the knee flexion torque could be generated by the applied force, 

the knee flexion could be increased. The increase in the maximum knee flexion angle 

when the force was applied after toe-off (people kept the knee joint flexion) was smaller 

than when the force was applied around toe-off. Considering that the acceleration is 

maximized at the beginning of the movement, it is better to apply the force is at the 

beginning of the swing phase for the assistance of lifting the toe in the earlier phase. The 

duration of the gait phase when the toe clearance increased significantly was largest when 

the force was applied around toe-off. In contrast, the force application does not affect the 

maximum knee flexion angle if the knee is extending after knee flexion finishes. 

Changes in the ratio of the hip angle to the knee angle after maximum toe clearance 

can be considered as the cause of increased minimum toe clearance. As the toe clearance 

value becomes minimum during the knee joint extension, the effect of the assistance that 

applies the flexion torque to the knee on the minimum toe clearance is small. The ankle 

joint tends to be kept in a neutral position when the toe clearance value becomes minimum. 

As shown in Fig. 2.16, the force application at or after toe-off increased the toe clearance 

in the later swing phase. If the hip flexion angle was higher during knee extension and 

the knee joint angle was the same, the knee joint position and toe position were higher. In 
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addition, as hip joint movement is generated by the action of the rectus femoris, the 

increase in potential energy due to the extension of the rectus femoris can contribute to 

an increase in the bending angular velocity of the hip joint. This indicates that changes in 

the knee flexion angle at an early stage might affect changes in the toe trajectory at a later 

stage.  

The increasing degree in toe clearance in the swing phase varied between trials. The 

author assumed that the variance of the timing of applying the force was one of the causes 

of this difference. The author observed that several data show that the robot applied the 

force in the stance phase and did not increase the toe clearance. When the force 

application timing was earlier in conditions 3 and 4, that is, the force was applied nearer 

at toe-off, the degree of the increase in the toe clearance was higher. In contrast, the degree 

of increase in the toe clearance tended to be similar in some data in conditions 3 and 4. 

Because the significant difference of the force application timing was not observed 

between conditions 3 and 4, might increase the variance of the results related to the toe 

clearance change might be increased although the system satisfied the experimental 

conditions in most trials. The described method of gait phase detection still had a large 

error for use online because the detection of the start point of the swing phase was difficult 

in this method. Therefore, a more accurate algorithm is important to detect toe-off for 

achieving the final goal. The improved algorithm is described in Chapter 3. 

The author observed that the force application generating knee flexion torque in the 

later swing phase did not inhibit the knee extension in the experiment for younger 

participants. This means that the robot could knee flexion motion without inhibition of 

foot contact. The author assumed that this is because the force strength was not sufficient 

to inhibit the knee extension for younger people. However, the force application in the 

later swing phase might inhibit older people from extending the knee and contacting the 

ground. The minimum toe clearance could be increased by the force application around 

toe-off even in older people. Consequently, the force application around toe-off was 

effective as an assistance to increase the minimum toe clearance. 

The force application to the shank around toe-off generated knee flexion torque and 
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increased the toe trajectory throughout the swing phase. Although the figures show 

averages derived by all participants’ data and ignore the individual difference, the 

tendency of these results was general for all participants. The shape of the toe trajectory 

did not change when the force was applied around toe-off, which could be regarded as a 

natural change. In addition, the increase in the minimum toe clearance was approximately 

3 mm, while its variance was approximately 5 mm [2.6]. Therefore, the robotic assistance 

around toe-off is sufficient to ensure toe clearance of the ground and does not excessively 

increase it. Misalignment problem might occur every time when people wear the frame. 

It affects the generated assistance torque and degree of change of motion. Because this 

system can monitor the angle, the real-time evaluation of the joint angles can address this 

issue by adjusting the force strength based on evaluation results. 

 

2.8 Summary 

Cable-driven hardware was developed as an assistance robot to increase the toe 

clearance with intermittent force application. To establish the system to assist human toe 

motion as needed, it was needed to analyze the changes of the toe trajectory and the lower 

limb joint angles for determining the force application timing. The force is applied to 

assist the shank movement and generate mainly knee flexion torque. First, the effect of 

force application timings on the joints and the toe was investigated in younger people. 

Four time points of force application were considered based on knee flexion motion, i.e., 

condition 1, time when the knee joint started flexing in pre-swing phase; condition 2, time 

when the toe was lifted by knee flexion motion; condition 3: time when the knee joint 

was flexing after toe-off; and condition 4: time when knee joint was about to finish flexing. 

The increase in the maximum knee flexion angle caused the increase of the maximum toe 

clearance in the swing phase. Changes in the ratio of the hip angle to the knee angle after 

maximum toe clearance can be considered as the cause of increased minimum toe 

clearance. The force application in the later swing phase might inhibit older people from 

extending the knee and contacting the ground. Next, the effect of force application at toe-

off was investigated in older people. MTC could be increased by the force application 
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around toe-off even in older people. Consequently, the author concludes that the force 

application around toe-off was effective as an assistance to increase MTC. 
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Chapter 3 Gait event detection algorithm 
 

 

3.1 Related Research about Gait Event Detection 

Identification of the human gait phase is necessary for decision and control of the 

motion of the robot assisting a human gait motion because walking is a periodic 

movement [3.1]. The gait phase detection method has been researched not only for robotic 

assistance but also for human gait analysis and rehabilitation training, such as functional 

electrical stimulation [3.2]. Because the gait phase mainly consists of swing and stance 

phases [3.1, 3.3], heel-contact and toe-off need be identified for the gait phase detection. 

Methods with a floor force or a camera are the gold standards for the detection of the 

heel-contact and toe-off [3.4, 3.5]. However, they cannot detect the gait events outside. 

Detection of the gait phase using wearable sensors is required for use outdoors. 

A footswitch is the most common wearable sensor to identify whether the foot 

contacts the ground or not. The footswitch is a thin force sensor that can be attached to 

the sole of the foot. Particularly, a force-sensing resistor (FSR) that is a thin film of a 

conductive polymer is used. A voltage is outputted depending on the force value applied 

to the FSR. Therefore, foot contact information can be monitored if a threshold of FSRs 

voltage is set appropriately [3.2, 3.6–3.8]. The reliability can be adversely affected by 

different locations of attachment and long-term use (durability issue) [3.8, 3.9]. In 

particular, the durability issue affects the robotic control system seriously, that is, makes 

the control results incorrect or stops the robotic function. Additionally, the method relying 

only on the FSR cannot obtain the kinematic trajectory information of the leg joints. A 

more robust method of gait phase detection, which adapts automatically to differences in 

attachment placement using the sensor that can obtain the kinematic information of leg 

joints, is required. 

In previous researches, the computational technology has been developed for 
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identifying foot-contact state with wearable sensors (i.e., accelerometers [3.10, 3.11], 

gyroscopes [3.12, 3.13], and inertial measurement units [3.14]). To extract patterns of 

features of gait parameters, many detection methods based on machine learning 

techniques have been proposed using support vector machines [3.15], linear discriminant 

analysis [3.16], Gaussian mixture model [3.17], and hidden Markov model (HMM) [3.18, 

3.19]. In particular, classifiers based on hierarchical weighted decisions combined with 

the HMM resulted in accurate classification because this model can recognize a temporal 

pattern through estimation of a hidden state that cannot be observed directly by 

considering a transition probability of phases using gait parameters that can be directly 

obtained [3.19]. Nonetheless, the detection rate is not perfect; i.e., it is less than 100%. 

Moreover, these methods using supervised learning required true values for the training 

phase. In addition, the detection accuracy of toe-off remains unclear. The classifier 

algorithm of gait event detection extracting a feature of human gait kinematics might be 

used fast and more accurately than the algorithm using machine learning because the 

kinematics feature is a characteristic of gait motion in each gait phase. 

Angular information is essential for control and evaluation of the gait training robot. 

When the gait phase can be detected using only angular information, it is not necessary 

to install different types of sensors to the gait training robot. There were found few studies 

that have proposed the gait events detection algorithm using only angular information. 

The adaptive oscillator, which is a real-time algorithm that learns the frequency and 

amplitude of a periodic signal, has been applied with angular sensors [3.20]. Although it 

can estimate a periodic joint movement in real time, it is difficult to detect the gait events. 

In another method, a multilayer perceptron neural network was used with hip and knee 

joints angles, which does not perfectly identify phases [3.21]. There remains a need for 

establishing a novel detection algorithm that uses the features of joint angles associated 

with heel contact and toe-off. 

In this chapter, the objective is to establish the algorithm to detect toe-off using only 

angular information of the leg for control and prediction of the gait training robot. The 

heel contact was also detected for investigation of the usability of the proposed algorithm 

as a gait phase detection algorithm because the heel-contact is the basic gait event. The 
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requirements of the algorithm were real-time use, detection of gait events in every gait 

cycle, and immediate and automatic learning of the parameters in each person. The 

objective error was set as 50 ms or less considering the delay of the force application of 

the cable-driven robot (about 50 ms), duration of force application (about 130 ms in this 

thesis), and duration of the gait phases (duration of the knee flexion in the swing phase 

was about 230 ms). There is a coordination pattern between joint angles of the lower limb 

which might be different between gait phases [3.1]. The hypothesis was that the heel-

contact and toe-off could be detected in real-time by detecting the change of the 

coordination patterns once they were classified.  

 

3.2 Algorithm 

The algorithm was based on a lower-dimensional structure of the leg joints during 

walking, which is a characteristic of inter-joint coordination [3.22, 3.23]. The periodic 

trajectory in the space that consists of the hip, knee, and ankle joint angles (i.e., three 

variables) during walking is embedded on planes, which means that three-dimensional 

angular parameters can be expressed with two variables. The gait motion of the lower 

limb consists of the swing of the leg for lifting and moving the foot forward (swing up), 

the swing of the leg for preparing foot-ground contact (swing down), the loading response 

for absorbing the shock of foot contact (loading response), and support for the body 

(support). The author assumed that there were four coordination patterns (corresponding 

to the swing up, swing down, loading response, and support) during one gait cycle, and 

the angular trajectory could be embedded on four planes. The hypothesis was that the 

heel-contact and toe-off can be detected by identifying switching points from the plane 

of the swing down to the plane of the loading response and from the plane of the support 

to the plane of the swing up, respectively. Thus, the proposed algorithm calculates the 

parameter of the four planes and finds their switching points (Fig. 3.1). The sensed 

angular data were classified, and the plane to which the data belongs was identified. The 

parameters of four planes were calculated from the recorded angular data of one gait cycle. 
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electrical goniometers (SG110・SG150, Biometrics Ltd., Newport, UK) (Fig. 3.2). The 

goniometers were attached across the joints with medical adhesive tape, which did not 

inhibit the participant movement. The goniometers consisted of a cable inside a protective 

spring and strain gauges that sense the joint angles in the sagittal plane by detecting a 

change in strain along the length of the cable. Electronic voltages were outputted, and 

signals were transferred to a robotic controller. The calibration was performed so that the 

ankle joint angle was zero when the shank and foot were orthogonal, the knee joint angle 

was zero when the thigh and shank were in line, and the hip joint angle was zero when 

the torso and thigh were in line. The positive directions of the hip joint angle, the knee 

joint angle, and ankle joint angle were the extension, the flexion, and the dorsiflexion 

directions, respectively. 

Parameters of four planes in the angular space are calculated by classifying angular 

data. The equation of the plane can be derived if the basis vectors of the plane and any 

selected point on the plane are derived. The coordinates P on the plane are expressed by  

                     P = α1w1 + α2w2 + R,                    (3.1) 

where w1 and w2 indicate basis vectors, α1 and α2 are coefficients of the basis vectors, 

and R indicates the coordinates of the mean angle data in the swing phase.  

Angular data are extracted from the middle of each motion for derivation of the basis 

vectors and one point of the four planes because it is difficult to detect the border of the 

planes. The maximum hip flexion angle was defined as 100º and the minimum hip flexion 

angle was defined as 0º. Angular data categorized as belonging to the motion of the swing 

up are extracted when the hip motion is in flexion and hip flexion angle is more than 10º  

and the knee joint is in flexion. Next, angular data categorized as the swing down motion 

are extracted when the knee joint is extending, and the hip flexion angle is less than 30º 

after the swing motion. Additionally, angular data categorized as the loading response 

(i.e., dual-support phase) are extracted when the hip joint is extending, the knee joint is 

flexing, and dorsiflexion angle of the ankle joint is less than 10% of the range of ankle 

joint angle from the second minimum value. Finally, parts of angular data categorized as 

the motion of supporting the body are extracted when the hip joint is extending and the 
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ankle joint is dorsiflexing. The coordinates R of the planes are derived by calculating the 

average of the extracted angular data for each motion. The extraction range does not 

change the basis vectors of the plane if the extracted data is on the same plane.  

After extracting angular data, the basis vectors of each plane are calculated from the 

eigenvectors of the first and second components in principal component analysis (PCA) 

[3.24]. The first principal component is the vector that maximizes the data variance when 

all data are projected onto the axis of this vector. The second principal component is 

calculated to maximize the variance under the constraint condition that it is orthogonal to 

the first principal component. The principal components can be derived by solving the 

eigenvalue problem on the covariance matrix of the extracted angular data. There is an 

eigenvector corresponding to each derived eigenvalue; the eigenvector of the largest 

eigenvalue is the first principal component while the eigenvector of the second-largest 

eigenvalue is the second principal component. 

Next, the algorithm detects in which plane the current measured angular data are by 

projecting the measured angular data onto the planes and comparing projection distance. 

The switching time point of the gait phase can be detected by monitoring the change of 

the planes to which the angular data belong based on the distance from a point before the 

projection to points projected onto each plane. The vectors from the coordinates before 

projection to the coordinates after projection and the two eigenvectors, w1 and w2, are 

perpendicular to each other; i.e., 

                   (P – Q)・w1 = 0,                              (3.2) 

                   (P – Q)・w2 = 0,                              (3.3) 

where Q indicates the coordinates of the lower-limb articular angular space before 

projection. 

The norm of vectors w1 and w2 is one, and the inner product of w1 and w2 is zero. 

Therefore, α1 and α2 of each plane are calculated to derive the projected points, as 

follows: 

                      α1 = Q・w1 − R・w1,                        (3.4) 
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The author assumed that the switching point from the plane related to the swing down to 

the plane related to the loading response showed the timing of heel-contact and that the 

switching point from the plane related to the supporting to the plane related to the swing 

up showed the timing of toe-off. 

 

3.3 Evaluation experiment protocol 

Seven healthy adults (four men and three women; age: 27 ± 5 years, body weight: 57 

± 13 kg, height: 1.65 ± 0.14 m) with no neurological injuries or gait disorders were 

recruited. This experiment follows the principles of the institutional review board of 

Waseda University. The experimenter gave the participants detailed the experimental 

objectives and explained that they were able to withdraw from the experiment whenever 

they desired. The experiment was conducted after the obtainment of their consents. 

Eight force plates (OR 6-7 2000, AMTI, Berkshire, UK) were used to detect the toe-

off and heel-contact. Fig. 3.4 shows that two force plates in the lateral direction and four 

force plates were placed in the longitudinal direction. Table 3.1 shows the specification 

of the force plate. The data were measured when the participants walked at their preferred 

speed on the force plates. They started to walk approximately 60 cm before the force 

plates and stopped at a point approximately 60 cm after the plates. The experimenter 

instructed them to step on the left side of the force plates with their left foot and on the 

right side of the force plates with their right foot. Each participant walked 20 times. 

20 gait cycles were extracted for analysis data of angles and floor force in each 

participant. The total number of gait cycles that were extracted was 138 (the data were 

not recorded in two parts) to evaluate the proposed algorithm. Measurements were 

performed only for the right lower limb because the gait phase and events can be obtained 

by measuring only one side. The sampling frequency of the measurement instruments was 

125 Hz. Raw data were smoothed with a low-pass filter (cutoff frequency was 6 Hz) to 

remove high-frequency noise considering that the frequency of the cyclic joint 

movements during walking was less than 6 Hz in this experiment. 
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3.4 Result 

Table 3.2 shows the contribution rates of the eigenvalues calculated with all 

participants data. The contribution rates of the first and second components were derived, 

and their sum exceeded 99%.  

Table 3.2 Contribution rate of eigenvectors. 

Typ
e of 

motion 

Contribution rate 

First 
component 

Second 
component 

First and Second 
components 

Mea
n % 

SD % 
Mea

n % 
SD % Mean % SD % 

Swin
g up 

0.906 0.0783 0.0913 0.0761 0.998 0.0037 

Swin
g down 

0.964 0.0489 0.0331 0.0461 0.997 0.0054 

Loadi
ng 

response 
0.954 0.0665 0.0434 0.0632 0.9977 0.0050 

Supp
ort 

0.931 0.0931 0.0624 0.0766 0.994 0.0148 

 

Table 3.3 Mean error between points. 

 

Mean error between time points derived by the 
proposed algorithm and the force-plate-based method  

Time of heel contact  (s) Time of toe-off  (s) 

Analysis 1 0.00236 -0.00649 

Analysis 2 -0.0151 0.0257 
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3.5 Discussion 

Table 3.2 indicates that the sum of the contribution rates of the first and second 

eigenvectors was approximately 99%, that is, little variance in each motion while the 

contribution rate of each component varied. Each combination of eigenvectors was 

calculated using angular data in the middle duration of each phase. This result shows that 

the three dimensions of angular variables of lower limb joints were reduced to two 

dimensions; i.e., a plane. Therefore, the planes in the angular space of lower limb joints 

could be extracted as a feature of inter-joint coordination during locomotion.  

Both RMSEs of the heel-contact and toe-off detection were approximately 0.030 s 

between the results of the analysis based on force-plate and the proposed algorithm that 

derived a plane in every gait cycle, as shown in Fig. 3.7. The error was lower than 3% of 

the duration of one gait cycle. The result indicates that the transition of the plane is 

correlated with the phase transition of swing and stance phases. The joints motions in the 

stance phase are extension of the hip joint, small flexion and extension of the knee joint, 

and two repetitions of dorsiflexion and planar flexion of the ankle joints. The joints 

motions in the swing phase are flexion followed by extension of the knee joint during 

flexion of the hip joint, and dorsiflexion and planar flexion of the ankle joint. The number 

of parameters which are controlled for generating an endpoint motion is reduced as a 

strategy of the human central neural control system because the degree of freedom of the 

joints is abundant. The control objective of lower limb joints is different among gait 

phases: swing of the leg for lifting the foot and moving it forward, swing of the leg for 

preparing foot–ground contact, loading response for absorbing the shock of foot contact, 

and support for the body. The manner to reduce the degrees of freedom (i.e., the patterns 

of the inter-joint coordination) changes between gait phases. Therefore, there are some 

planes in the three-dimensional angular space corresponding to the gait phases. The point 

of switching from the plane of swing down to the plane of the loading response and the 

point of switching from the plane of support to the plane of swing up need to be detected 

for the identification of toe-off and heel-contact.  

The RMSEs of the time points between results of the method based on the force plates 
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and the method using the proposed algorithm with a created plane were lower than 0.040 

s as shown in Fig. 3.8, which accounts for 4 % of the gait cycle duration. The result 

implies that the plane in the angular space varies during walking because the accuracy 

was lower in the case where the plane was calculated using angular data of the first gait 

cycle than in case where the plane was calculated for every gait cycle. In contrast, the 

clustering results of the planes were not different except for data around the switching 

points. Although the analysis was performed offline, the algorithm could be used in real-

time as soon as the angles were sensed once the planes were derived because the data 

were processed in a time-series order. Therefore, the planes could be classified and 

detected as a gait phase detection in real time. As the start of the stance and swing phases 

are identified, more detail gait events, such as a heel rise, can be identified by calculating 

the percentage of the gait cycle duration or the polar angle of the trajectory in angular 

space. Furthermore, the system can obtain the motion information of the lower limb joints 

in each phase. Therefore, the proposed algorithm can be used for the synchronization of 

a robot and a human during steady locomotion with only angular information. Although 

the sampling frequency of the measurement equipment (125 Hz) might increase the error 

of the detection of the timepoints, it did not affect the identification of the gait phase 

because the increase was smaller than 0.7% of the duration of one gait cycle. The result 

of the toe-off detection required the objective value in this study.  

The wearable sensors were applied for the proposed gait phase detection algorithm 

because they can be easily attached to the body in daily life. Wearable angular sensors are 

more suitable for real-time gait training robotic control than force plates and cameras 

because the data of the goniometer are easily processed without location limitation. 

Moreover, because the goniometers are more durable than FSRs, the system can reduce 

the possibility of damaging the sensor and having the system behaving incorrectly during 

gait training comparing to the FSRs method. Furthermore, the estimation does not depend 

on the initial attachment placement of wearable sensors because the algorithm can be 

calibrated immediately and automatically, and features can be extracted using the PCA 

immediately.  

Partitioning the data space of sensed variables is needed for classification. It is 



73 

 

difficult to find the margin of the cyclic trajectory of the angular data using the 

unsupervised machine learning algorithm because there is no gap between each part of 

the trajectory corresponding to gait phases. The adaptive oscillator can derive the 

frequency of the cyclic signal of the angles but cannot detect timings of heel contact and 

toe-off from the angular information. In previous methods, the margins of the angular 

cyclic trajectory were detected using the supervised methods, which requires the 

calibration with accurate training dataset by taking a time to collect the accurate dataset 

and train the algorithm. In contrast, the proposed algorithm allows the classifier to 

automatically find the margins corresponding to the heel-contact and toe-off. The 

proposed algorithm has advantages in terms of a lower computational load and quick 

adaptation to an individual relative to the supervised method because the proposed 

method does not require the accurate dataset for the training of the algorithm. Moreover, 

the proposed algorithm could detect the heel-contact and toe-off every gait cycle, i.e., the 

rate of the detection is higher than the rate of the conventional detection algorithms with 

the machine learning. 

The algorithm had two main limitations in this work. First, noise influences the 

detection results because it is difficult to extract patterns of coordination between joint 

angles if the noise fluctuates the angular values. In particular, the author assumed that the 

degree of noise that depends on the electrical environment caused the individual 

differences in the proportions of two basis vectors to all variables and the detection 

accuracy. When the threshold of the low-pass filter was higher, the algorithm had a 

difficulty in detecting heel-contact and toe-off. Second, the algorithm was evaluated only 

for the forward gait. The coordination patterns of joints change depending on the types of 

gait, such as turns to the left or right. The classification of the planes related to more types 

of gait in multiple environments will be needed for future studies on the gait phase 

detection. The author assumes that the plane of the stance phase might not change and it 

can be detected even though the motion in the swing phase changes because the 

movement and coordination patterns of lower-limb joints in the stance phase do not 

change during stable walking in several locomotion tasks, such as stepping over an 

obstacle. This investigation focused on inter-joint coordination of one leg, but considering 
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inter-limb coordination will be beneficial for further accurate detection because both legs 

coordinate mutually. 

 

3.6 Summary 

In this chapter, the novel detection algorithm of the heel contact and toe-off was 

proposed. The algorithm derives the four planes in angular space of hip, knee, and ankle 

joints, and finds the switching points of the planes. The results of the experiment 

involving seven people shows that the change in the planes reflected the change in gait 

phases. Moreover, although the analysis was performed offline, the algorithm could be 

used in real-time as soon as the angles were sensed once the planes were derived because 

the data were processed in a time-series order. The RMSEs of the time points between 

results of the method based on the force plates and the method using the proposed 

algorithm with a created plane were lower than 0.040 s, which accounts for 4 % of the 

gait cycle duration. The result of the toe-off detection required the objective value in this 

study.  
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Chapter 4 Prediction algorithm of MTC 
 

 

4.1 Background 

The dispersion of the minimum toe clearance (MTC) needs to be controlled to ensure 

toe clearance and avoid tripping. The tripping possibility increases if the toe height 

becomes lower at an arbitrary timing. The prediction of toe clearance is necessary for 

robotic guidance to inhibit the toe clearance from reducing. 

Methodologies of calculation using wearable sensors to estimate toe clearance have 

been studied mainly for monitoring the toe motion in daily life [4.1-4.5]. The integration 

of the inertial parameters of inertial measurement unit (IMU), which consists of tri-axial 

accelerometers and gyroscopes, was performed to estimate the toe parameters [4.1-4.3]. 

The de-drifted integration of two cableless IMUs attached to the feet can estimate the foot 

clearance with an error of approximately 20 mm [4.3]. Because this integration method 

has a large estimation error, it is difficult to calculate the position. The calculation method 

with a machine learning has been studied for estimation or prediction of the toe 

parameters after training the algorithm in each person [4.4-4.6]. Using machine learning 

with Gaussian functions and a hill-climbing feature-selection method, the root mean 

square error (RMSE) of 6.6 mm was estimated for young individuals [4.5]. The prediction 

of the toe parameters was also performed using the regression model with Gaussian 

function [4.6]. The author believes that gaussian functions that were applied using 

acceleration features through the double differentiation of the toe position captured with 

a motion capture system could predict the MTC most accurately (an RMSE of 3.7 mm) 

for one gait cycle ahead.  

The conventional prediction method cannot increase the toe clearance only when it 

reduces for intermittent assistance of the gait training robot. This is because the proposal 

did not use the sensors that could be embedded with the robotic online control system. If 



76 

 

the wearable inertial sensor is used for obtaining toe acceleration information as an 

alternative to the camera system, the calculation accuracy is reduced. Furthermore, the 

conventional method did not have a sufficient accuracy to detect the lower values of MTC 

considering the MTC variability. The interquartile range of MTC is approximately 4.3 

mm for young individuals and approximately 5.3 mm for older individuals [4.7]. 

Therefore, detection of lower values of MTC might be lower than 50 % and difficult for 

the proposal gait training assistance. A more accurate prediction method that uses 

wearable sensors to obtain the input data is required. 

The hypothesis is that the information related to lower limb joints motion at toe-off is 

related to the future toe clearance because the swing joints motion generate the toe motion. 

The leg motion is controlled based on inter-joint coordination that maintains low 

variability of the position of the end point [4.9]. The author assumed that the difference 

between the angular information in a certain phase is related to the difference of toe 

clearance amongst the gait cycles. Moreover, the author believes the information of the 

angular velocity and acceleration of the lower limb joint would be helpful for prediction 

because these parameters contain information regarding the movement over time. 

In this chapter, an algorithm to predict MTC using the angles, angular velocities, and 

angular accelerations of the lower limb joints is proposed. Machine learning based 

regression with Gaussian functions to probabilistically predict the toe clearance with 

consideration to the noise of the input data was applied. Moreover, maximum toe 

clearance during the swing phase was also predicted by the proposed algorithm because 

the information of both maximum and minimum toe clearance is helpful to monitor the 

toe trajectory and can be used for future research of robotic gait training system. 

Additionally, the author investigated the relationship between the number of training data 

and the prediction accuracy, and evaluated the prediction algorithm to investigate whether 

the method could predict more accurately the toe clearance and detect the lower value of 

toe clearance. The objective value of the MTC prediction error was lower than 2.5 mm 

considering MTC variability. 
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where a, b, and c indicate angles of the hip, knee, and ankle joint that are parameters of 

the normal vector, respectively. The other orthogonal vector was derived by calculating 

the cross product between the normal vector and the first orthogonal vector. The Angular 

values at toe-off were extracted by detecting the point where the distance from the 

measured angular point to the projected point onto the section plane was minimum, as 

shown in Fig. 4.3. 

The toe clearance parameters were predicted with the RBFN consisting of Gaussian 

functions (Fig. 4.4). The RBFN is a three-layer artificial neural network whose hidden 

layer consists of radial basis functions. Because the RBFN is the linear sum of the radial 

basis functions, the parameters of the RBFN could be derived with linear square method. 

Therefore, nonlinear regression can be performed rapidly with the RBFN. The RBFN 

calculates output values based on the Euclidean distance between the vector of the input 

data and the centroids of each Gaussian. The centroids were derived with the K-means 

clustering algorithm which partitions the dataset into a predetermined number of groups 

based on the Euclidean distance. The RBFN structure is expressed as follows: 

𝒚 = ∑ Wkexp(-
‖x - ck‖

2

σ

N

k=1

) + 𝛾 (4.2) 

 

where y indicates the output vector, Wk indicates the weight vector, x indicates the input 

vector, ck indicates the centroid vector, N means the number of RBF units, γ means a 

variable coefficient, and σ means a variable of the standard deviation of the Gaussian 

function. σ was derived as follows [31]: 

       (4.3) 

where dmax indicates the maximum distance amongst the data and, m indicates the data 

dimension. 

𝜎 =
𝑑𝑚𝑎𝑥

 𝑁𝑚
𝑚
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𝑥𝑜𝑢𝑡

𝑥𝑖𝑛
 = 

s
1+Td s

 , (4.4) 

where Td indicates the time constant. In this work, Td was 167 ms to differentiate data 

whose frequency was lower than 6 Hz. An s-plane to z-plane transform based on the 

backward difference were conducted as: 

s = 
1 - z-1

∆T
, (4.5) 

where ΔT indicates the sampling time, which was 8.33 ms in this chapter’s experiment. 

The equation of the pseudo differential was substituted into (4.4) as 

𝒙𝒐𝒖𝒕_𝒏 = 
𝒙𝒊𝒏_𝒏 − 𝒙𝒊𝒏_𝒏−𝟏+𝑇𝑑𝒙𝒐𝒖𝒕_𝒏−𝟏

∆T
, (4.6) 

where xout_n and xin_n indicate the nth differential value and the nth input value, 

respectively. 

All input values were normalized for reducing the effect of the attachment position 

deviation of the wearable angle sensors. The minimum values in the previous gait cycle 

were subtracted from the input values. Additionally, all values of input data were divided 

by their range of values in the first gait cycle in the phase of learning RBFN parameters 

in order to decrease the effect of difference in the range of values. 

 

4. 3 Evaluation experiment 

Four healthy young adults (four male and one female; aged 27 ± 5 years, body weight 

57 ± 13 kg, height 1.64 ± 0.13 cm) and two healthy old adults (two male; aged 65 ± 2 

years, body weight 62 ± 1 kg, height 1.68 ± 0.03 cm) took part in the first experiment. 

Five healthy young adults (four male and one female; aged 25 ± 3 years, body weight 58 

± 9 kg, height 1.63 ± 0.7 cm) took part in the second experiment. All of them did not 

present neurological injuries or gait disorders. The subjects walked on a treadmill, as 

shown in Fig. 4.5. This experiment follows the principles of the institutional review board 

of Waseda University. The author gave the participants detailed the experimental  





83 

 

objectives and explained that they were able to withdraw from the experiment whenever 

they desired. The experiment was conducted after the obtainment of their consents. 

As the maximum and minimum values are an indicator of how high a person lifted 

the toe and how high a person can keep the toe from the ground, respectively, the 

maximum toe clearance that was detected in the earlier swing phase and MTC that was 

detected in the later swing phase were extracted as characteristic toe clearance parameters. 

The goniometers (SG110 and SG150, Biometrics Ltd., Newport, UK) were used to sense 

the leg joints angles. The toe height information of the right foot was obtained using the 

motion capture system (Raptor-E; Motion Analysis, Santa Rosa, CA, USA). The author 

attached the marker that was captured by the motion capture system to the first 

metatarsophalangeal joint of the right foot.  

In the first experiment, the 6 subjects participated in the experiment and walked on 

the treadmill for 360 s at a preferred constant speed (2.1 to 3.0 km/h). The needed number 

of training data points for learning the RBFN parameters which improved the accuracy 

of the prediction was investigated. 20 to 200 gait cycle data points for training of the 

RBFN and 100 gait cycle data points for RBFN test were used. The number of RBF units 

was set from two to twenty. 

In the second experiment, the 5 subjects were instructed to walk on the treadmill for 

600 s at 2.0 km/h, 2.5 km/h, and 3.0km/h. The duration of walking at 2.5 km/h was 360 

s, and the durations of walking at 2.0 km/h and 3.0 km/h were 120 s, respectively. 

Investigation for the prediction ability of the RBFN was performed when the gait speed 

changed. The approximately 160 cycle data were collected as the training data when 

people walked at 2.5 km/h in the first experiment, and the 100 gait cycle data points were 

collected as the test data when people walked at 2.0 km/h and 3.0 km/h. The number of 

RBF units was set from two to twenty. Additionally, the goniometers that measured the 

angles of the left leg were also used in this experiment. 

The time from the point where the input data were extracted to the points where the 

toe clearance reached the maximum and minimum values were derived. The average time 

of all training data and the standard deviation were calculated to evaluate whether both 
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the maximum and minimum clearances could be previously predicted. 

The maximum and minimum toe clearance values were normalized. As shown in Fig. 

4.6, the mean value of the training data was defined as zero. The values of maximum or 

minimum toe clearance that were higher than the mean value were positive (plus sign), 

and the values that were lower than the mean value were negative (minus sign). The 

RMSE between the grand truth data and the predicted data of the maximum and minimum 

toe clearances was calculated, as follows: 

                                     (10) 

where yk indicates the true value, 𝑦�̃�  indicates the predicted value, and n means the 
number of data points. 

Moreover, the accuracy percentage of the predicted data was calculated based on the 

accuracy of the plus or minus signs, i.e., the ratio of the number of predicted values that 

were the same sign as the measured value to the total number of data points. 

 

4.4 Results and Discussion 

Fig. 4.7 indicates the time from the points where input data were extracted to the 

points where the toe clearance reached the maximum or minimum value. The input data 

could be extracted 0.1 s before the toe clearance was the maximum in the earlier swing 

phase. 

Fig. 4.8 shows an example of the calculation result of MTC using the training dataset. 

The horizontal axis shows the real MTC that was measured by the motion capture system, 

and the vertical axis shows the calculated MTC as a result of learning parameters of the 

algorithm. Zero value of each axis means the median in a subject. Although it has a large 

variance, the tendency of the correlation can be observed. In contrast, the range of the 

calculated values was smaller than the real value. Moreover, the larger or smaller MTC 

is, the higher number of outliers could be observed. The author assumed that the number 

RMSE=   (yk-y k)2n
k=1

n
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Fig. 4.8 Example of calculated versus real MTC in training data. 

 

 

Fig. 4.9 Example RMSE between the predicted MTC and the true MTC for each number of RBFN units. 
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Figs. 4.10 and 4.11 show the RMSE between the true and predicted data for the 

maximum and minimum toe clearances corresponding to the number of training data 

points. The RMSE tended to reduce if the higher number of training dataset was used. In 

particular, the use of 200 dataset made the RMSE minimum for subjects 1, 3, and 6. The 

RMSE was minimum for other subjects if the number of training dataset was between 80 

and 180. The average minimum RMSE of maximum toe clearance was 2.99 mm, and the 

lowest RMSE was 2.31 mm. The average minimum RMSE of the MTC was 2.34 mm, 

and the lowest RMSE was 1.79 mm. The accuracy rate of the predicted data of both the 

maximum and minimum toe clearances in each the number of training dataset is shown 

in Figs. 4.12 and 4.13, respectively. The average accuracy rate was 71% and 68% for the 

maximum and minimum toe clearances, respectively. 

Fig. 4.7 shows the average time from the time points where the system extracted the 

input data to the time points where the maximum or minimum toe clearances were 

positive. This indicates that the algorithm could calculate and derive the parameters of 

the toe clearance previously using input parameters in the early swing phase.  

Figs. 4.10 and 4.11 show that the RMSE between the ground truth toe clearance 

measured by the motion capture system and the predicted toe clearance was the lowest if 

the number of training dataset was between 80 and 200. Furthermore, the increase in the 

number of training datasets tended to improve the prediction accuracy rate. Therefore, it 

is better for the algorithm to include a higher number of training dataset because it easies 

the extraction of the characteristics of the dataset. The RBFN algorithm classifies the 

input data space and derives the medians of each cluster during the training of the network. 

The output value is calculated based on the deference of the input data value from the 

medians. As the number of training data points is reduced, the effect of input data noise 

increases, which hinders the accurate determination of RBFN parameters. Classification 

of training dataset and determination of medians required about 100-200 training dataset 

to reduce the variance and impact of noise that is always included in the data in the 

experiment.  

As shown in Figs. 4.10 and 4.11, the RMSE was 2.99 mm for the maximum toe 
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clearance and 2.34 mm for the MTC, which is a more accurate prediction compared with 

previous methods. The RMSE of the maximum toe clearance was higher than the RMSE 

of the MTC because the deviation in maximum toe clearance was higher than the 

deviation in MTC. Individual differences in RMSE tended to increase when the variability 

of toe clearance between gait cycles was higher. The probability of detection of values 

that were lower than the median was over 68%. In other words, the probability was higher 

than the probability of random detection. 

Figs. 4.14 and 4.15 show the RMSE and the accuracy rate as the predicted results for 

the maximum toe clearance and MTC using approximately 160 training datasets in cases 

where the walking velocity changed. The MTC prediction error was lower than the results 

of the previous studies even if the gait speed was different from the constant gait speed 

when the RBFN was trained. Moreover, the RBFN algorithm could find the values that 

were lower than the median toe clearance with the higher rate than the random detection 

rate even in case where the gait velocity changed. The author assumed that the RBFN 

parameters represented difference of foot movement related to the change of the gait 

velocity because the input variables corresponded to the kinematics generating the foot 

movement. However, the change of the gait velocity increased the RMSE of both 

maximum and minimum toe clearances. Therefore, it might be better for RBFN to be 

trained using the input dataset in multiple gait speed conditions for generalization of the 

regression. Furthermore, the standard deviation of the RMSE in all subjects reduced if 

the angle, angular velocity, angular acceleration of the left leg joints were used as input 

variables. The author assumed that it indicated that the prediction accuracy can be 

improved if more numbers of input variables related to kinematics generating foot 

movement are used. As a future study, both feet and increase in input parameters of joints 

of both lower limbs will be considered. 

The proposed algorithm has the advantage of predicting preliminary toe clearance in 

real time, while the conventional calculation methods were created to estimate toe 

clearance [4.10-4.14]. Furthermore, the proposed algorithm was more accurate 

comparing the previous prediction methods [4.15]. The output value of the RBFN was 

the normalized toe clearance value to evaluate if the algorithm could detect the lower 
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values than median toe clearance. However, the real toe clearance value can be derived 

by adding the subtracted value. One of limitations of the proposal algorithm is that the 

training of the RBFN is needed in each person, which is the same as previous MTC 

estimation methods using wearable sensors. The system requires a training phase using a 

camera system before using the prediction algorithm. 

The accuracy became lower if subjects had a tendency of changing the planes of the 

angular space during walking. As shown in Fig. 4.7, the duration varied between gait 

cycles. The variance of the phase timing to extract input data might reduce the prediction 

accuracy. The angular information always changes with time within one gait cycle. One 

point on the periodic trajectory in angular space was extracted in each gait cycle. If phase 

detection errors occur, it is difficult to compare the articular angle, angular velocity, and 

angular acceleration differences among the gait cycles. The plane structure of the angular 

space of the lower limb joints was used for detection of the phase transition. The basis 

vectors of the planes might change between the gait cycles because the trajectory shape 

was different between the cycles. Therefore, the proposed algorithm calculated the section 

plane of the angular trajectory when the phase changed to the swing phase (swing up) 

from the stance phase (support) to consider the change of planes. Although this study 

demonstrated that the toe clearance parameters can be predicted using only angular 

information in the sagittal plane, the algorithm can still be improved and more robust. 

The accuracy of gait phase detection and the prediction of toe clearance may improve by 

increasing the input parameters, such as the angles in coronal plane or the foot contact 

information. 

 

4. 5 Summary 

In this chapter, a novel prediction of toe clearance parameters algorithm with an 

RBFN using the angles, angular velocities, and angular accelerations of the hip, knee, and 

ankle joints in the sagittal plane was proposed. The proposed algorithm aimed at 

predicting MTC in the later swing phase. In addition, the algorithm could predict the 
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maximum toe clearance in the earlier swing phase. The RMSE was 2.99 mm for the 

maximum toe clearance and 2.34 mm for the MTC. Additionally, the RMSE between true 

and predicted values was 4.04 mm for the maximum toe clearance, and 2.88 mm for the 

MTC in the condition where the gait velocity changed. The RMSEs of the MTC are 

smaller than previous studies. Values of the MTC that were lower than the median could 

be detected with higher probability than 68%; that is, the detection accuracy of the 

proposed algorithm was better than the random detection. The proposal met the objective 

value in this study. Therefore, a robot using this algorithm may be able to influence the 

distribution of the MTC. In future studies, the gait phase detection method will be 

improved. Moreover, experiments to investigate the effect of robotic assistance with the 

proposed toe clearance prediction algorithm on older people will be performed 
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Chapter 5 Evaluation of prediction-based 
assistance 

 

 

5.1 System flow 

The proposal robotic system performed the intermittent force application to increase 

lower values of the MTC based on prediction results of the MTC. The overview of the 

system flow is shown in Fig. 5.1. The robotic system was controlled using the lower limb 

joints angles based on the hardware system that was proposed in Chap. 2, the detection 

algorithm of toe-off that was proposed in Chap. 3, and the prediction algorithm that was 

proposed in Chap. 4. The proposal system is the prediction-based assistance of MTC to 

achieve the assistance as needed in terms of toe control for prevention training to avoid 

tripping. 

The input data were eighteen variables related to the motion of foot: angles, angular 

velocity, angular acceleration of hip, knee, and ankle joints in the sagittal and coronal 

planes. The angles were measured using the same wearable two-axis angular sensors as 

the ones explained in Chap. 4. The angular velocity and angular acceleration of these 

joints were derived by differentiating the angles with a pseudo differential. The input 

parameters were smoothed with a low pass filter (cutoff frequency was 6 Hz) because 

noise frequency was over 6 Hz. 

The timing of toe-off was detected by the plane-based detection algorithm that was 

proposed in Chap. 3 using an angular space consisting of the lower limb joints’ angles in 

sagittal plane. The system calculated vectors constituting four planes corresponding to 

four motions (lifting of the foot, foot–ground contact, loading response, and support for 

the body), and extracted the switching points to the plane related to lifting of the foot from 

the plane related to support of the body by considering the distance of the sensed angular 
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The input variables were normalized to eliminate the difference of the range of values 

because the output of RBFN relied on the difference of the input values from the centroids. 

First, the standard deviation of each variable in the training dataset was derived. Next, 

each measured input value was divided by each standard deviation, that is, the measured 

input vector was divided by the vector of the standard deviation. 

A cable-driven system that could switch between modes in which force is applied and 

not applied was used. Force was applied to a part of the shank and generated the knee 

flexion torque, which lifted the toe because knee flexion has the largest contribution to 

toe clearance. The start timing of the force application was at toe-off after prediction 

because generating assistive knee flexion torque around toe-off can increase MTC, which 

was shown in Chap. 2. The motor was not activated when the prediction MTC was higher 

than the mean value or the gait phase was not the early swing phase, and the movable 

pulley compensated for the cable length. After detecting that the predicted MTC was 

lower than the mean value, the motor was activated to pull the cable for force application 

while the knee joint was flexing. The pulled cable tension was controlled by the rotational 

position control of the motor. The motor rotational position returned to original position 

after short-term force application. 

 

5.2 Evaluation experiment 

5.2.1. Investigation of the effect of intermittent force application 

Effect of the intermittent force application without prediction on after-effect was 

analyzed in the first experiment. Five healthy adults (four men and one woman; aged 27 

± 5 years, body weight 57 ± 13 kg, height 1.64 ± 0.13 cm) with no neurological injuries 

or gait disorders participated in the experiment. This experiment follows the principles of 

the institutional review board of Waseda University. The author gave the participants 

detailed the experimental objectives and explained that they were able to withdraw from 

the experiment whenever they desired. The experiment was conducted after the 

obtainment of their consents. 
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Initially, the harness and robot were attached to the participants. In the experiment, 

the participants were instructed to walk on a treadmill at 2.5 km/h. A measurement always 

started after participants walked on the treadmill for 10 s and their gait reached a steady 

state. The gait was analyzed for 20 s before and after the intermittent force application 

phase because working memory remains for 20 s [5.1]. The first phase duration was 20 s 

with normal walking without the intermittent force application. The next phase duration 

was 40 s with the intermittent application of tensile force to the knee. The final phase also 

lasted with 20 s of normal walking without the intermittent force application. The 

participants continued to walk throughout all phases.  

The frequency of the force application of the gait-training robot was changed to either 

once in one gait cycle, once in two gait cycles, or once in three gait cycles. The force was 

applied at approximately 28 times when the force application frequency was once in one 

gait cycle. The force was applied for a short time from toe-off, which was detected based 

on the parameters of the planes that the system calculated in the first phase before the 

robot started assistance. Three sets of trials for each subject were conducted. The mean 

frequency of the gait cycle was approximately 0.70 Hz.  

The change of maximum knee joint flexion angle between before and after the force 

application phase was analyzed. In addition, the mean value of the increase rate for each 

force application frequency of each subject was calculated to investigate the effect of the 

force application frequency on the change of the gait. Moreover, the increase rate of 

maximum knee joint flexion angle between before and during the force application phase  

was analyzed in a condition where the increase in the knee joint angle after the duration 

of the force application was maximum in each subject for investigating whether the 

change in gait was caused by the robotic assistance or not. Furthermore, the increase rate 

of the MTC which was sensed with the motion capture system (Raptor-E; Motion 

Analysis, Santa Rosa, CA, USA) was also analyzed in the same condition. The analysis 

of variance on the data was performed in each subject for investigating whether the angles 

significantly increased or not. There were approximately 13 samples in each trial for each 

participant. 
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of the study goal (the objectives of this experiment were not explained). The author 

explained that they were able to withdraw from the experiment whenever they desired. 

The experiment was conducted after the obtainment of their consents. This experiment 

follows the principles of the institutional review board of Waseda University. 

The toe coordinates of the right foot were measured using a motion capture system 

(Raptor-E; Motion Analysis, Santa Rosa, CA, USA) that could measure marker 

coordinates with an error of 0.1 mm or less. The marker for the measurement was attached 

to the first metatarsophalangeal joint of the foot. The angles of the right hip, knee, and 

ankle joints were measured through goniometers (SG110 and SG150, Biometrics Ltd., 

Newport, UK), which are wearable angle sensors. The participants wore the cable-driven 

system and the sensors on their right leg. 

The experiment task consisted of the measurement of gait data for training the RBFN 

and testing the robotic assistance by using the prediction algorithm. At first, the 

experimental participants were guided to continue walking for 5 min, in which they 

decided their preferred walking speed (2.5 ± 0.27 km/h). Next, they walked on a treadmill 

for 400 s; this was considered the measurement phase (approximately 200 datasets were 

used for training and 100 datasets were used to check the results). The measured toe height 

data obtained from the motion capture system and the measured angular data at toe-off 

obtained from the robotic system were used for the machine learning of the RBFN. After 

training of the parameters of the RBFN using 2-20 Gaussian functions, the participants 

were asked to walk on the treadmill for 270 s. After 30 s, the robot intermittently applied 

the force when the algorithm predicted that the MTC would be lower than the mean for 

120 s. The duration of application of the tensile force was approximately 0.18 s, and the 

desired force value was 16 N based on a previous research. The robot stopped the 

intermittent assistance for the last 120 s of walking. 

The author analyzed how the MTC changed according to the intermittent force 

application and whether the change of MTC remained after the assistance phase by using 

a t-test. Approximately 90 gait data during steady locomotion in each phase (before, 

during, and after intermittent assistance) were analyzed for each participant. The first 
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quartile, mean, third quartile, and maximum values of the MTC were derived to analyze 

the change of the MTC distribution. The minimum value and first quartile of MTC were 

analyzed to evaluate whether the lower MTC values could be increased through robotic 

assistance. The first and third quartiles showed the values of the lowest and highest 25% 

of the data, respectively. Furthermore, the RMSE was calculated using 100 data in 

measurement phase for test of RBFN training results. 

 

5.3 Results and discussion 

5.3.1. Investigation of the effect of intermittent force application 

Fig. 5.3 shows the mean value of change in maximum knee flexion angle between 

before and after the force application phase for each frequency of force application for 

each subject. The maximum knee flexion angle was higher after the force application 

phase finished than before. The frequency of the force application of the case of once in 

two gait cycles significantly increased the maximum knee flexion angle after the force 

application phase for subjects A, C, D, and E. The angle increased significantly when the 

force application frequency was once in three gait cycles for subjects A and B. The knee 

flexion angle significantly increased when the force was applied in every gait cycle for 

subject D. Intermittent force application that does not assist knee flexion motion every 

gait cycle could increase the range of the knee joint flexion angle significantly when 

people walked after force application was stopped. In contrast, the force application that 

assists knee flexion motion every gait cycle could not increase the range of the knee joint 

flexion angle after force application was stopped in all subjects. The non-application of 

assistive force in every gait cycle, compared to the case in which it was applied, was more 

beneficial in encouraging subjects to learn the induced gait. 

Fig. 5.4 shows the change in maximum knee flexion angle between before and while 

the force was applied in condition where the increase of the angle after the force 

application phase was a maximum for each subject. Fig. 5.5 indicates the change in MTC 

between before and after the force application phase in case where the increase of the 
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angle after the force application phase was maximum for each subject. The frequency of 

the force application was once in two gait cycles in subjects A, C, D, and E, and once in 

three gait cycles in subject B.  

The increase of the maximum knee flexion angle was significant in subjects A, B, and 

D in a condition where the degree of increase was the most among all conditions in each 

subject. There are two types of gait cycles; when the motor was activated (force was 

applied) and not activated (force was not applied) during intermittent force application. 

The author observed the tendency that the greater knee flexion angle was in the gait cycles 

where the motor stopped during force application, the more the increase of the knee 

flexion angle was. Therefore, the increase of the knee flexion motion remains after force 

application phase if the subjects keeps the larger knee flexion motion without force 

application between times of exposure to the force application. The author interpreted 

that reduction of force application frequency was beneficial to encourage people to walk 

with greater maximum knee flexion angle. In the case of subject C, the angle decreased 

and then increased again after the duration of the intermittent force application. The 

author assumed that subject C tried to return to the gait when assisted. 

The maximum knee flexion angle when the force was applied was not higher before 

the force was applied in subjects A or E. The author observed that the maximum knee 

flexion angle increased when the force was not applied during the intermittent force 

application phase although the angle did not increase when the force was applied in 

subject A. The author assumed that the reason why no increase in the knee flexion angle 

was caused when the force was applied was that subject A tended to rely on the robotic 

assistance and decrease his activation to flex the knee joint. In this experiment, the 

subjects could easily predict the timing of the application of assistance by the gait-training 

robot because the force application frequency was constant in each trial. There was a 

possibility that subject A kept his activation to flex his knee joint only when the force was 

not applied during the force application phase. Conversely, the author assumed an error 

in the force application. 
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Figure 5.4. Increase in maximum knee flexion angle between before and during intermittent force 

application phase, where the increase of the angle after the duration of the force application was 

maximum in each subject. 

 

 

Figure 5.5. Increase in minimum toe clearance angle between before and during intermittent force 

application, where the increase of the angle after the duration of the force application was maximum in 

each subject. 
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5.3.2. Evaluation of the effect of prediction-based training 

The applied force of the cable-driven robot used in this experiment increased the knee 

flexion angle that was shown in Chap.2. The system could switch the force application 

mode based on the prediction result because the maximum force strength was 15.9 and -

0.4 N when the predicted MTC was higher and lower than the mean MTC (before force 

application). The cable-driven robot was controlled based on the prediction results. 

Fig. 5.6 indicates the minimum value before, during, and after intermittent-force 

application. Figs. 5.7, 5.8, 5.9, and 5.10 show the first quartile, mean, third quartile, and 

maximum value of the MTC in each phase, respectively.  

The minimum and first-quartile values of the MTC increased significantly with the 

prediction-based intermittent-force application, as indicated in Figs. 5.6 and 5.7. The 

minimum value of the MTC during the application of intermittent force was lower than 

the mean MTC before the force was applied intermittently. In contrast, the first quartile 

of MTC during the intermittent force application did not significantly differ from the 

mean MTC before the application of the intermittent force. The original difference 

between the minimum and mean MTC values before the intermittent force application 

was approximately 5.1 mm. The difference between minimum MTC during the 

application of intermittent force and mean MTC before the application was approximately 

3.5 mm. This implies that the system could inhibit the participants from producing the toe 

motion around the minimum value of the original MTC distribution. In the experiment, 

the proposed algorithm was able to predict MTC within an error of approximately 2.4 

mm. As a result, approximately 84% of the MTC values during the force application were 

higher than the mean MTC before the intermittent force application. 

The minimum and first quartile values of MTC increased even after the intermittent 

force application as shown in Figs. 5.6 and 5.7. As shown in the first experiment in this 

chapter, the reduction of the force application frequency contributed to increase the 

probability that the training effect remained. In addition, the prediction-based force 

application could modify the distribution of MTC. Because the training robot did not 

enhance the muscle strength, the gait change might result from the central nervous system 
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change. The after-effect generally appears as a result of the predictive adjustment which 

is the feedforward adaptation altering motion pattern memorized in the cerebellum [5.2]. 

When the motion is altered by external factors, people firstly try to adapt to the new 

motion based on the reactive adjustment with lower level of central nervous system. The 

proprioceptive sense related to toe motion is feedbacked to the cerebellum. The human 

reaction was switched from the reactive adjustment to the predictive adjustment through 

trial and error repetition [5.3]. People do not learn the new motion pattern if they are fully 

moved by the robot. The robotic assistance that intermittently applied the force, 

increasing MTC when it lowered, provides proprioceptive sense to avoid the MTC 

reduction. Although the participants did not know the objective of this experiment 

(increasing the lower values of MTC distribution), they automatically modified their 

motion to increase the lower values of MTC distribution. The author assumed that the 

proposed intermittent force application based on MTC prediction involved the 

modification of MTC control by encouraging participants to try to avoid reducing MTC 

unconsciously thorough proprioceptive stimulation by the robot to avoid the reduction of 

MTC. 

The minimum, first quartile, mean, and third quartile values of MTC were not 

significantly different between, during, and after intermittent force application while the 

maximum values were significantly different. The increased MTC at the gait cycle when 

the force was applied was higher than the original MTC. It was observed that the more 

the third-quartile or maximum values of MTC increased during intermittent force 

application, the lesser was the increase in lower values of MTC after intermittent-force 

application as the after-effect. Fig. 5.11 indicates two examples of change in distribution 

of MTC. Variance of MTC increased, and the lower values of MTC was not different 

between after and before force application in one female case. In contrast, variance of 

MTC reduced, and the lower values of MTC was higher after force application finished 

than before force application in one male case. Considering that the interquartile change 

rate was approximately -47% (decrease) in male participants and 200% (increase) in 

female participants, the degree of the MTC change during intermittent force application 

had an effect on the after-effect. The individual physical differences influence the degree 
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5. 4 Summary 

Adaptive control of gait training robots has been determined to improve gait 

performance through motion assistance. Controlling MTC to avoid its decrease among 

gait cycles is important during walking to prevent tripping. No conventional gait training 

robots can adjust assistance timing based on MTC. In this chapter, the author proposes a 

system that intermittently applies force based on the MTC prediction algorithm to 

encourage people to walk by avoiding MTC reduction. This prediction algorithm is based 

on a radial basis function network, whose input data include the angles, angular velocities, 

and angular accelerations of the hip, knee, and ankle joints in the sagittal and coronal 

planes at toe-off. The cable-driven system that can switch between assistance and non-

assistance modes applies a force when the predicted MTC is lower than the mean value. 

Eight participants were asked to walk on a treadmill, and the effect of the system was 

tested. The MTC data before, during, and after the assistance phase were analyzed for 

120 s. The results showed that the minimum and first quartile values of MTC could be 

increased during and after the assistance phase. 
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Chapter 6 Conclusion 
 

 

6. 1 Summary 

The objective of this thesis was presenting a control system of gait training robot with 

intermittent force application based on the prediction of MTC to improve human toe 

control ability during walking. To encourage people to walk by avoiding MTC reduction, 

the MTC needs to be predicted previously and modified only when the value is lower. It 

is necessary to apply the force to the human for modifying the MTC in case of reduction. 

Therefore, the system needed to be designed to switch assistance-mode and non-

assistance-mode. Moreover, the author assumed that the kinematic information of lower 

limb joints in the same phase between gait cycles was related to future toe clearance. 

Therefore, techniques of detection of phase and pattern classification were proposed and 

combined as the prediction algorithm. Moreover, gait phase detection technique is needed 

for robotic control. Prediction should be performed sufficiently early to assist the swing 

motion. 

Chapter 1 introduces the background of the thesis in terms of aged-society and 

importance of walking for establishing the society health and longevity. Moreover, the 

author describes the purpose and originality of this study after summarizing the state-of-

the-art of robotic technologies encouraging people to walk and neurophysiological 

mechanism of human locomotion.  

In this work, a hardware system of the robot with cable-driven system that increases 

toe height was introduced. To establish the system to assist human toe motion as needed, 

it was needed to analyze the effect of force application timings on the changes of the toe 

trajectory and the lower limb joint angles. The author designed the system to apply the 

force to a part of the shank and the force direction was longitudinal along the shank toward 

the knee. The robot controls the motor rotation and transmits the cable tensile force to the 



112 

lower leg. This actuator system was designed to ensure safety: the motor does not pull the 

cable when it is not activated and almost all the pulleys are located far away from the 

body so that the cable tensile force is transmitted only to a frame which people wore. The 

cable tensile force was measured by the loadcell attached between the frame and the 

cable-spring component. First, the effect of force application timings on the joints and the 

toe was investigated in younger people. Four time points of force application were 

considered based on knee flexion motion, i.e., condition 1, time when the knee joint 

started flexing in pre-swing phase; condition 2, time when the toe was lifted by knee 

flexion motion; condition 3: time when the knee joint was flexing after toe-off; and 

condition 4: time when knee joint was about to finish flexing. The increase in the 

maximum knee flexion angle caused the increase of the maximum toe clearance in the 

swing phase. Changes in the ratio of the hip angle to the knee angle after maximum toe 

clearance can be considered as the cause of increased minimum toe clearance. The force 

application in the later swing phase might inhibit older people from extending the knee 

and contacting the ground. Next, the effect of force application at toe-off was investigated 

in older people. MTC could be increased by the force application around toe-off even in 

older people. Consequently, the author concludes that the force application around toe-

off was effective as an assistance to increase MTC. 

It was also proposed a novel gait event detection algorithm. For precise timing control 

of force application and prediction of MTC, the more precise algorithm of gait event 

detection than the method previously introduced was needed. The author proposed the 

algorithm using the plantar structure between lower limb joint angles that are different 

among phases. In chapter 2, the timing of force application to increase the MTC was toe-

off or later. Therefore, the author aimed at ensuring the algorithm to detect the toe-off 

phase. First, the algorithm derives the four planes, which are related to swing motion, 

motion for preparing foot–ground contact, the loading response motion, and support 

motion for the body, in angular space of hip, knee, and ankle joints without supervised 

learning. Next, the switching points of the planes related to toe-off were detected by 

calculating the measured angular coordinates and the planes. The results of the 

experiment involving seven subjects joined show that the change in the planes reflected 
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the change in gait phases. The error was less than 0.035 s when the gait events were 

detected after calculating planes using the first gait datum. Moreover, although t analysis 

was performed, the results show that the heel contact and toe-off could be detected as 

soon as the angles were sensed once the planes were derived. 

A novel toe clearance prediction algorithm with a radial basis function network using 

the angles, angular velocities, and angular accelerations of the hip, knee, and ankle joints 

in the sagittal plane was also proposed. The calculation timing of the proposed algorithm 

was the start of the swing phase, and the MTC was predicted that was appeared later in 

the same swing phase. The input data could be extracted with the algorithm based on the 

method established in Chapter 3. The author performed the experiments where six 

subjects walked on a treadmill for 360 s. In each subject, gait data with 20-200 gait cycles 

were used for training the radial basis function and 100 gait cycle data were used for 

evaluation in each person. The RMSE between the measured and the predicted MTC was 

2.34 mm. Moreover, the RMSE was 2.88 mm in the condition where the gait velocity 

changed. The RMSEs of the MTC are smaller than previous studies. Values of the MTC 

that were lower than the median could be detected with higher probability than 68%; that 

is, the detection accuracy of the proposed algorithm was better than the random detection. 

Although the accuracy can still be improved, the author concludes that this algorithm is 

able to influence the distribution of MTC because the error was smaller than the original 

standard deviation of MTC. 

An evaluation of the system that intermittently applies force based on the MTC 

prediction algorithm to encourage people to walk by avoiding MTC reduction was 

performed. The algorithms of Chapters 3 and 4 were implemented on the hardware system 

of Chapter 2. Eight participants were asked to walk on a treadmill, and we tested the effect 

of the system. First, the radial basis function network was trained with approximately 200 

gait cycle data in each person. Next, the data of MTC before, during, and after the 

assistance phase were analyzed for 120 s. The force-application mode and non-force-

application mode were switched based on the prediction result. The results showed that 

the minimum and first quartile values of MTC could be increased during and after the 

assistance phase. When people are fully moved by the robot, the after-effect does not 
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reflect the guided motion. Therefore, the author assumes that the proposed intermittent 

force application based on prediction-involved modification by encouraging the 

participants to try to avoid reducing MTC unconsciously thorough proprioceptive 

stimulation to avoid the reduction of MTC. 

The novelty of this study is to establish the intermittent force application method of 

gait training robot based on prediction of minimum toe clearance and modify the 

distribution of minimum toe clearance. The proposed system that can allow people to 

move freely can be combined with the training system for reproducing environments such 

as obstacles. Moreover, the proposed prediction-based assistance method can be used for 

other training systems to modify the motion into the more precise motion and improve 

control ability in the future. Because the motor was located away from the body, the 

weight is smaller (approximately 100 g) than other gait training robots (several kilogram).  

The proposed system is a simple system (1 degree of freedom) compared to conventional 

exoskeleton gait training robots (approximately 6 degrees of freedom). To the best of my 

knowledge, no research related gait training robots has investigated the change in MTC 

distribution before. 

 

6. 2 Future work 

The contribution of this study is to establish the intermittent force application method 

of gait training robot based on prediction of MTC and modify the MTC distribution. The 

proposed prediction-based assistance method can be used for other training systems to 

modify the motion into the more precise motion and improve control ability in the future. 

It is beneficial to apply the prediction-based assistance method to other assistive devices 

for gait training, such as the ankle assistive devices. 

Ensuring adaptive force strength method will be beneficial as a future study. The force 

strength was constant in this experiment because the effect of the difference in force 

strength was not the focus of this study. In addition, the physical differences affect the 

degree of movement changes. It was observed that the higher the third-quartile or 
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maximum values of MTC, the lesser was the increase in MTC after intermittent-force 

application (after-effect). Considering that the interquartile change rate decreased for 

male and increased for female subjects, the degree of the MTC change when the force 

was applied influenced the after-effect. 

After ensuring the adaptive adjustment method, it was investigated the after-effect 

with diverse people including middle-age and old-age people. The training time to 

improve the toe control ability as a short-time after-effect and the effect of the training 

duration remains unclear. Investigations of long-term effects based on individual 

characteristics will be beneficial for making a future guideline to prompt the active aging. 

One of the system limitations is that the training environment is constant. Considering 

human gait adaptation, experiencing multiple environments during training is important. 

In terms of toe height control to avoid tripping, the appropriate toe height during walking 

is different depending on obstacles or steps. The author assumes that augmented reality 

techniques could improve the gait training environment and enable the human to train and 

improve their ability of toe control to step over the obstacles. The proposed system allows 

people to freely move and can be combined with the training system for reproducing 

environments, such as obstacles. As a future study, the virtual obstacle system using the 

head-mounted display that could implement the augmented reality will be developed for 

gait training robotic system with multiple environments. 

The scenario for the commercialization of the product is explained in this paragraph. 

The author estimates 3 years to establish the training robotic system with virtual obstacle 

adaptation to individual characteristics. Furthermore, the training system can be 

combined with other researches for commercialization of product. The actuation system 

of this study can be replaced by a soft actuator in the future. Although the applied force 

strength needs to be adjusted for each person, the required maximum force can be 

estimated to be just around 20 N or less, which is feasible for a soft actuation system. In 

addition, the training system could be combined with a personal life log system, which 

could provide information related to the human health state to the gait training system. 

Combination of services, such as insurance or fintech, can be achieved and cost for using 
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