12 research outputs found
Effect of angiotensin-converting enzyme inhibitor and angiotensin receptor blocker initiation on organ support-free days in patients hospitalized with COVID-19
IMPORTANCE Overactivation of the renin-angiotensin system (RAS) may contribute to poor clinical outcomes in patients with COVID-19.
Objective To determine whether angiotensin-converting enzyme (ACE) inhibitor or angiotensin receptor blocker (ARB) initiation improves outcomes in patients hospitalized for COVID-19.
DESIGN, SETTING, AND PARTICIPANTS In an ongoing, adaptive platform randomized clinical trial, 721 critically ill and 58 non–critically ill hospitalized adults were randomized to receive an RAS inhibitor or control between March 16, 2021, and February 25, 2022, at 69 sites in 7 countries (final follow-up on June 1, 2022).
INTERVENTIONS Patients were randomized to receive open-label initiation of an ACE inhibitor (n = 257), ARB (n = 248), ARB in combination with DMX-200 (a chemokine receptor-2 inhibitor; n = 10), or no RAS inhibitor (control; n = 264) for up to 10 days.
MAIN OUTCOMES AND MEASURES The primary outcome was organ support–free days, a composite of hospital survival and days alive without cardiovascular or respiratory organ support through 21 days. The primary analysis was a bayesian cumulative logistic model. Odds ratios (ORs) greater than 1 represent improved outcomes.
RESULTS On February 25, 2022, enrollment was discontinued due to safety concerns. Among 679 critically ill patients with available primary outcome data, the median age was 56 years and 239 participants (35.2%) were women. Median (IQR) organ support–free days among critically ill patients was 10 (–1 to 16) in the ACE inhibitor group (n = 231), 8 (–1 to 17) in the ARB group (n = 217), and 12 (0 to 17) in the control group (n = 231) (median adjusted odds ratios of 0.77 [95% bayesian credible interval, 0.58-1.06] for improvement for ACE inhibitor and 0.76 [95% credible interval, 0.56-1.05] for ARB compared with control). The posterior probabilities that ACE inhibitors and ARBs worsened organ support–free days compared with control were 94.9% and 95.4%, respectively. Hospital survival occurred in 166 of 231 critically ill participants (71.9%) in the ACE inhibitor group, 152 of 217 (70.0%) in the ARB group, and 182 of 231 (78.8%) in the control group (posterior probabilities that ACE inhibitor and ARB worsened hospital survival compared with control were 95.3% and 98.1%, respectively).
CONCLUSIONS AND RELEVANCE In this trial, among critically ill adults with COVID-19, initiation of an ACE inhibitor or ARB did not improve, and likely worsened, clinical outcomes.
TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT0273570
Interpersonal similarity of autistic traits predicts friendship quality
Autistic traits are known to be associated with social interaction difficulties. Yet, somewhat paradoxically, relevant research has been typically restricted to studying individuals. In line with the ‘dialectical misattunement hypothesis’ and clinical insights of intact social interactions among autistic individuals, we hypothesized that friendship quality varies as a function of interpersonal similarity and more concretely the difference value of autistic traits in a dyad, above and beyond autistic traits per se. Therefore, in this study, we used self-report questionnaires to investigate these measures in a sample of 67 neurotypical dyads across a broad range of autistic traits. Our results demonstrate that the more similar two persons are in autistic traits, the higher is the perceived quality of their friendship, irrespective of friendship duration, age, sex and, importantly, the (average of) autistic traits in a given dyad. More specifically, higher interpersonal similarity of autistic traits was associated with higher measures of closeness, acceptance and help. These results, therefore, lend support to the idea of an interactive turn in the study of social abilities across the autism spectrum and pave the way for future studies on the multiscale dynamics of social interactions
Transnational governance spirals: the transformation of rule-making authority in internet regulation and corporate financial reporting
Transnational regulation involves profound changes in the ways rules are set today. Based on two case studies on Internet governance and the regulation of corporate financial reporting, we show that transnational governance is best understood as a dynamic, non-linear process. In both fields, regulatory institutions are constantly renegotiated between public and private actors, a process which gives rise to new, hybrid, forms of authority. The hybridization of authority challenges the common distinction between public and private authority in transnational regulation. We propose to characterize the ongoing dynamics as transnational governance spirals. Our comparative analysis follows a research strategy of causal reconstruction. To that end, we identify three mechanisms serving as analytical tools to explain transnational institution building and the observed governance spirals: integration, authorization and formalization
Subcortical brain volume differences in participants with attention deficit hyperactivity disorder in children and adults: a cross-sectional mega-analysis
Background Neuroimaging studies have shown structural alterations in several brain regions in children and adults with attention deficit hyperactivity disorder (ADHD). Through the formation of the international ENIGMA ADHD Working Group, we aimed to address weaknesses of previous imaging studies and meta-analyses, namely inadequate sample size and methodological heterogeneity. We aimed to investigate whether there are structural differences in children and adults with ADHD compared with those without this diagnosis. Methods In this cross-sectional mega-analysis, we used the data from the international ENIGMA Working Group collaboration, which in the present analysis was frozen at Feb 8, 2015. Individual sites analysed structural T1-weighted MRI brain scans with harmonised protocols of individuals with ADHD compared with those who do not have this diagnosis. Our primary outcome was to assess case-control differences in subcortical structures and intracranial volume through pooling of all individual data from all cohorts in this collaboration. For this analysis, p values were significant at the false discovery rate corrected threshold of p=0·0156. Findings Our sample comprised 1713 participants with ADHD and 1529 controls from 23 sites with a median age of 14 years (range 4–63 years). The volumes of the accumbens (Cohen's d=−0·15), amygdala (d=−0·19), caudate (d=−0·11), hippocampus (d=−0·11), putamen (d=−0·14), and intracranial volume (d=−0·10) were smaller in individuals with ADHD compared with controls in the mega-analysis. There was no difference in volume size in the pallidum (p=0·95) and thalamus (p=0·39) between people with ADHD and controls. Exploratory lifespan modelling suggested a delay of maturation and a delay of degeneration, as effect sizes were highest in most subgroups of children (21 years): in the accumbens (Cohen's d=−0·19 vs −0·10), amygdala (d=−0·18 vs −0·14), caudate (d=−0·13 vs −0·07), hippocampus (d=−0·12 vs −0·06), putamen (d=−0·18 vs −0·08), and intracranial volume (d=−0·14 vs 0·01). There was no difference between children and adults for the pallidum (p=0·79) or thalamus (p=0·89). Case-control differences in adults were non-significant (all p>0·03). Psychostimulant medication use (all p>0·15) or symptom scores (all p>0·02) did not influence results, nor did the presence of comorbid psychiatric disorders (all p>0·5). Interpretation With the largest dataset to date, we add new knowledge about bilateral amygdala, accumbens, and hippocampus reductions in ADHD. We extend the brain maturation delay theory for ADHD to include subcortical structures and refute medication effects on brain volume suggested by earlier meta-analyses. Lifespan analyses suggest that, in the absence of well powered longitudinal studies, the ENIGMA cross-sectional sample across six decades of ages provides a means to generate hypotheses about lifespan trajectories in brain phenotypes. Funding National Institutes of Health
Subcortical brain volume differences in participants with attention deficit hyperactivity disorder in children and adults: a cross-sectional mega-analysis
Background Neuroimaging studies have shown structural alterations in several brain regions in children and adults with attention deficit hyperactivity disorder (ADHD). Through the formation of the international ENIGMA ADHD Working Group, we aimed to address weaknesses of previous imaging studies and meta-analyses, namely inadequate sample size and methodological heterogeneity. We aimed to investigate whether there are structural differences in children and adults with ADHD compared with those without this diagnosis. Methods In this cross-sectional mega-analysis, we used the data from the international ENIGMA Working Group collaboration, which in the present analysis was frozen at Feb 8, 2015. Individual sites analysed structural T1-weighted MRI brain scans with harmonised protocols of individuals with ADHD compared with those who do not have this diagnosis. Our primary outcome was to assess case-control differences in subcortical structures and intracranial volume through pooling of all individual data from all cohorts in this collaboration. For this analysis, p values were significant at the false discovery rate corrected threshold of p=0.0156. Findings Our sample comprised 1713 participants with ADHD and 1529 controls from 23 sites with a median age of 14 years (range 4-63 years). The volumes of the accumbens (Cohen's d=-0.15), amygdala (d=-0.19), caudate (d=-0.11), hippocampus (d=-0.11), putamen (d=-0.14), and intracranial volume (d=-0.10) were smaller in individuals with ADHD compared with controls in the mega-analysis. There was no difference in volume size in the pallidum (p=0.95) and thalamus (p=0.39) between people with ADHD and controls. Exploratory lifespan modelling suggested a delay of maturation and a delay of degeneration, as effect sizes were highest in most subgroups of children ( 21 years): in the accumbens (Cohen's d=-0.19 vs -0.10), amygdala (d=-0.18 vs -0.14), caudate (d=-0.13 vs -0.07), hippocampus (d=-0.12 vs -0.06), putamen (d=-0.18 vs -0.08), and intracranial volume (d=-0.14 vs 0.01). There was no difference between children and adults for the pallidum (p=0.79) or thalamus (p=0.89). Case-control differences in adults were non-significant (all p > 0.03). Psychostimulant medication use (all p > 0.15) or symptom scores (all p > 0.02) did not influence results, nor did the presence of comorbid psychiatric disorders (all p > 0.5). Interpretation With the largest dataset to date, we add new knowledge about bilateral amygdala, accumbens, and hippocampus reductions in ADHD. We extend the brain maturation delay theory for ADHD to include subcortical structures and refute medication effects on brain volume suggested by earlier meta-analyses. Lifespan analyses suggest that, in the absence of well powered longitudinal studies, the ENIGMA cross-sectional sample across six decades of ages provides a means to generate hypotheses about lifespan trajectories in brain phenotypes