29 research outputs found

    Electric and magnetic dipole modes in high-resolution inelastic proton scattering at 00^\circ

    Full text link
    Inelastic proton scattering under extreme forward angles including 00^\circ and at energies of a few hundred MeV has been established as a new spectroscopic tool for the study of complete dipole strength distributions in nuclei. Such data allow an extraction of the electric dipole polarizability which provides important constraints parameters of the symmetry energy, which determine the neutron skin thickness and the equation of state (EOS) of neutron-rich matter. Also new insight into the much-debated nature of the pygmy dipole resonance (PDR) is obtained. Additionally, the isovector spin-M1 resonance can be studied in heavy nuclei, where only limited experimental information exists so far. Together with much improved results on the isoscalar spin-M1 strength distributions in N=ZN = Z nuclei, these data shed new light on the phenomenon of quenching of the nuclear spin response. Using dispersion matching techniques, high energy resolution (ΔE/E104\Delta E/E \leq 10^{-4} \,\, full width at half maximum, FWHM) can be achieved in the experiments. In spherical-vibrational nuclei considerable fine structure is observed in the energy region of the isovector giant dipole resonance (IVGDR). A quantitative analysis of the fine structure with wavelet methods provides information on the role of different damping mechanisms contributing to the width of the IVGDR. Furthermore, level densities can be extracted from a fluctuation analysis at excitation energies well above neutron threshold, a region hardly accessible by other means. The combination of the gamma strength function (GSF) extracted from the E1 and M1 strength distributions with the independently derived level density permits novel tests of the Brink-Axel hypothesis underlying all calculations of statistical model reaction cross sections in astrophysical applications in the energy region of the PDR.Comment: 52 pages, 64 figures, review article submitted to Eur. Phys. J.

    Isoscalar and isovector dipole excitations: Nuclear properties from low-lying states and from the isovector giant dipole resonance

    Get PDF
    Abstract This review paper concerns the research devoted to the study of the properties of dipole excitations in nuclei. The main focus is on questions related to isospin effects in these types of excitations. Particular attention is given to the experimental and theoretical efforts made to understand the nature and the specific structure of the low-lying dipole states known as the Pygmy Dipole Resonance (PDR). The main experimental methods employed in the study of the PDR are reviewed as well as the most interesting theoretical aspects. The main features of the experiments and of theoretical models are reported with special emphasis on the reaction cross sections populating the dipole states. Results are organized for nuclei according to different mass regions. The knowledge of the isovector dipole response as well as its low energy part is important in order to deduce the nuclear polarizability as accurate as possible. This issue is discussed in this paper together with the connection with the neutron skin and the nuclear equation of state. The important role played by the dipole response to deduce other physical quantities of general interest is discussed in the last two chapters. One concerns the level density and the other the isospin mixing in nuclei at finite temperature and its relation with beta decay

    A Model for the 3He(\vec d, p)4He Reaction at Intermediate Energies

    Get PDF
    Polarization correlation coefficients have been measured atRIKEN for the \vec 3He(\vec d,p)4He reaction at intermediate energies. We propose a model for the (\vec d, p) reaction mechanism using the pd elastic scattering amplitude which is rigorously determined by a Faddeev calculation and using modern NN forces. Our theoretical predictions for deuteron polarization observables A_y, A_{yy}, A_{xx} and A_{xz} at E_d=140, 200 and 270 MeV agree qualitatively in shape with the experimental data for the reaction 3He(\vec d,p)4He.Comment: 6 pages, 11 figures, 1 table, reference: http://www.phys.ntu.edu.tw/english/fb16/contribution/topic4/Uesaka_Tomohiro1. ps in Contribution for the XVIth IUPAP International Conference on Few-Body Problems in Physics, (Taipei, Taiwan 6-11, March 2000

    Dose Measurements through the Concrete and Iron Shields under the 100 to 400 MeV Quasi-Monoenergetic Neutron Field (at RCNP, Osaka Univ.)

    Full text link
    Shielding benchmark experiments are useful to verify the accuracy of calculation methods for the radiation shielding designs of high-energy accelerator facilities. In the present work, the benchmark experiments were carried out for 244- and 387-MeV quasi-monoenergetic neutron field at RCNP of Osaka University. Neutron dose rates through the test shields, 100-300 cm thick concrete and 40-100 cm thick iron, were measured by four kinds of neutron dose equivalent monitors, three kinds of wide-energy range monitors applied to high-energy neutron fields above 20 MeV and a conventional type rem monitor for neutrons up to 20 MeV, placed behind the test shields. Measured dose rates were compared one another. Measured results with the wide-energy range monitors were in agreement one another for both the concrete and the iron shields. For the conventional type rem monitor, measured results are smaller than those with the wide-energy range monitors for the concrete shields, while that are in agreements for the iron shields. The attenuation lengths were obtained from the measurements. The lengths from all the monitors are in agreement on the whole, though some differences are shown. These results are almost same as those from others measured at several hundred MeV neutron fields

    Isospin character of low-lying states in 56Fe.

    Get PDF
    Low-lying states in {sup 56}Fe, up to an excitation energy of about 4 MeV, have been investigated by means of inelastic proton and deuteron scattering experiments at {ital E}{sub {ital p}}=65 and 400 MeV and at {ital E}{sub {ital d}}=56 MeV, respectively. Measured cross sections and analyzing powers have been compared with coupled-channels calculations using collective form factors; calculations in both the Schr{umlt o}dinger and Dirac formalisms have been carried out for the proton data. For each probe, the matrix elements have been deduced for transitions from the ground state and from the 2{sub 1}{sup +} state to six quadrupole (2{sup +}) states to one octupole (3{sub 1}{sup {minus}}) and two hexadecapole (4{sub 1}{sup +} and 4{sub 2}{sup +}) states. The obtained matrix elements and the previous values from {gamma} decay or electron inelastic scattering have been used to evaluate the isospin character of the transitions. To discuss the quadrupole mixed-symmetry states in {sup 56}Fe, the deduced neutron ({ital M}{sub {ital n}}) and proton ({ital M}{sub {ital p}}) components of the matrix elements, or equivalently the isoscalar ({ital M}{sub {ital s}}) and isovector ({ital M}{sub {ital v}}) parts, have been compared with theoretical calculations based on the neutron-proton interacting bosonmore » model and on the shell model evaluated in a full {ital f}-{ital p} configuration space. {copyright} {ital 1996 The American Physical Society.}« les

    [12]Cからの0度陽子非弾性散乱における偏極移行量

    Get PDF
    本文データは平成22年度国立国会図書館の学位論文(博士)のデジタル化実施により作成された画像ファイルを基にpdf変換したものである京都大学0048新制・課程博士博士(理学)甲第8055号理博第2127号新制||理||1134(附属図書館)UT51-99-Z10京都大学大学院理学研究科物理学第二専攻(主査)教授 今井 憲一, 助教授 坂口 治隆, 教授 笹尾 登学位規則第4条第1項該当Doctor of ScienceKyoto UniversityDFA

    Gamma strength functions and level densities from high-resolution inelastic proton scattering at very forward angles

    No full text
    Inelastic proton scattering at energies of a few 100 MeV and forward angles including 0∘ provides a novel method to measure gamma strength functions (GSF) in nuclei in an energy range of about 5–23 MeV. The experiments provide not only the E1 but also the M1 part of the GSF. The latter is poorly known in heavy nuclei. A case study of 208Pb indicates that the systematics proposed for the M1-GSF in RIPL-3 needs to be substantially revised. Comparison with gamma decay data (e.g. from the Oslo method) allows to test the generalised Brink-Axel (BA) hypothesis in the energy region of the pygmy dipole resonance (PDR) crucial for the modelling of (n,γ) and (γ,n) reactions in astrophysical reaction networks. A fluctuation analysis of the high-resolution data also provides a direct measure of level densities in the energy region well above the neutron threshold, where hardly any experimental information is available

    Gamma strength functions and level densities from high-resolution inelastic proton scattering at very forward angles

    No full text
    Inelastic proton scattering at energies of a few 100 MeV and forward angles including 0∘ provides a novel method to measure gamma strength functions (GSF) in nuclei in an energy range of about 5–23 MeV. The experiments provide not only the E1 but also the M1 part of the GSF. The latter is poorly known in heavy nuclei. A case study of 208Pb indicates that the systematics proposed for the M1-GSF in RIPL-3 needs to be substantially revised. Comparison with gamma decay data (e.g. from the Oslo method) allows to test the generalised Brink-Axel (BA) hypothesis in the energy region of the pygmy dipole resonance (PDR) crucial for the modelling of (n,γ) and (γ,n) reactions in astrophysical reaction networks. A fluctuation analysis of the high-resolution data also provides a direct measure of level densities in the energy region well above the neutron threshold, where hardly any experimental information is available
    corecore