37 research outputs found
Recommended from our members
Facial feature localization using highly flexible yet sufficiently strict shape models
textAccurate and efficient localization of facial features is a crucial first step in many face-related computer vision tasks. Some of these tasks include, but not limited to: identity recognition, expression recognition, and head-pose estimation. Most effort in the field has been exerted towards developing better ways of modeling prior appearance knowledge and image observations. Modeling prior shape knowledge, on the other hand, has not been explored as much. In this dissertation I primarily focus on the limitations of the existing methods in terms of modeling the prior shape knowledge. I first introduce a new pose-constrained shape model. I describe my shape model as being "highly flexible yet sufficiently strict". Existing pose-constrained shape models are either too strict, and have questionable generalization power, or they are too loose, and have questionable localization accuracies. My model tries to find a good middle-ground by learning which shape constraints are more "informative" and should be kept, and which ones are not-so-important and may be omitted. I build my pose-constrained facial feature localization approach on this new shape model using a probabilistic graphical model framework. Within this framework, observed and unobserved variables are defined as the local image observations, and the feature locations, respectively. Feature localization, or "probabilistic inference", is then achieved by nonparametric belief propagation. I show that this approach outperforms other popular pose-constrained methods through qualitative and quantitative experiments. Next, I expand my pose-constrained localization approach to unconstrained setting using a multi-model strategy. While doing so, once again I identify and address the two key limitations of existing multi-model methods: 1) semantically and manually defining the models or "guiding" their generation, and 2) not having efficient and effective model selection strategies. First, I introduce an approach based on unsupervised clustering where the models are automatically learned from training data. Then, I complement this approach with an efficient and effective model selection strategy, which is based on a multi-class naive Bayesian classifier. This way, my method can have many more models, each with a higher level of expressive power, and consequently, provides a more effective partitioning of the face image space. This approach is validated through extensive experiments and comparisons with state-of-the-art methods on state-of-the-art datasets. In the last part of this dissertation I discuss a particular application of the previously introduced techniques; facial feature localization in unconstrained videos. I improve the frame-by-frame localization results, by estimating the actual head-movement from a sequence of noisy head-pose estimates, and then using this information for detecting and fixing the localization failures.Electrical and Computer Engineerin
SentiBench - a benchmark comparison of state-of-the-practice sentiment analysis methods
In the last few years thousands of scientific papers have investigated
sentiment analysis, several startups that measure opinions on real data have
emerged and a number of innovative products related to this theme have been
developed. There are multiple methods for measuring sentiments, including
lexical-based and supervised machine learning methods. Despite the vast
interest on the theme and wide popularity of some methods, it is unclear which
one is better for identifying the polarity (i.e., positive or negative) of a
message. Accordingly, there is a strong need to conduct a thorough
apple-to-apple comparison of sentiment analysis methods, \textit{as they are
used in practice}, across multiple datasets originated from different data
sources. Such a comparison is key for understanding the potential limitations,
advantages, and disadvantages of popular methods. This article aims at filling
this gap by presenting a benchmark comparison of twenty-four popular sentiment
analysis methods (which we call the state-of-the-practice methods). Our
evaluation is based on a benchmark of eighteen labeled datasets, covering
messages posted on social networks, movie and product reviews, as well as
opinions and comments in news articles. Our results highlight the extent to
which the prediction performance of these methods varies considerably across
datasets. Aiming at boosting the development of this research area, we open the
methods' codes and datasets used in this article, deploying them in a benchmark
system, which provides an open API for accessing and comparing sentence-level
sentiment analysis methods
The arms race: adversarial search defeats entropy used to detect malware
Malware creators have been getting their way for too long now. String-based similarity measures can leverage ground truth in a scalable way and can operate at a level of abstraction that is difficult to combat from the code level. At the string level, information theory and, specifically, entropy play an important role related to detecting patterns altered by concealment strategies, such as polymorphism or encryption. Controlling the entropy levels in different parts of a disk resident executable allows an analyst to detect malware or a black hat to evade the detection. This paper shows these two perspectives into two scalable entropy-based tools: EnTS and EEE. EnTS, the detection tool, shows the effectiveness of detecting entropy patterns, achieving 100% precision with 82% accuracy. It outperforms VirusTotal for accuracy on combined Kaggle and VirusShare malware. EEE, the evasion tool, shows the effectiveness of entropy as a concealment strategy, attacking binary-based state of the art detectors. It learns their detection patterns in up to 8 generations of its search process, and increments their false negative rate from range 0–9%, up to the range 90–98.7%
Recommended from our members
Vehicle detection and tracking in highway surveillance videos
textWe present a novel approach for vehicle detection and tracking in highway surveillance videos. This method incorporates well-studied computer vision and machine learning techniques to form an unsupervised system, where vehicles are automatically "learned" from video sequences. First an enhanced adaptive background mixture model is used to identify positive and negative examples. Then a video-specific classifier is trained with these examples. Both the background model and the trained classifier are used in conjunction to detect vehicles in a frame. Tracking is achieved by a simplified multi-hypotheses approach. An over-complete set of tracks
is created considering every observation within a time interval. As needed hypothesized detections are generated to force continuous tracks. Finally, a scoring function is used to separate the valid tracks in the over-complete set. The proposed detection and tracking algorithm is tested in a challenging application; vehicle counting. Our
method achieved very accurate results in three traffic surveillance videos that are
significantly different in terms of view-point, quality and clutter.Electrical and Computer Engineerin
Graph-based algorithms and models for security, healthcare, and finance
Graphs (or networks) are now omnipresent, infusing into many aspects of society. This dissertation contributes unified graph-based algorithms and models to help solve large-scale societal problems affecting millions of individuals' daily lives, from cyber-attacks involving malware to tobacco and alcohol addiction. The main thrusts of our research are: (1) Propagation-based Graph Mining Algorithms: We develop graph mining algorithms to propagate information between the nodes to infer important details about the unknown nodes. We present three examples: AESOP (patented) unearths malware lurking in people's computers with 99.61% true positive rate at 0.01% false positive rate; our application of ADAGE on malware detection (patent-pending) enables to detect malware in a streaming setting; and EDOCS (patent-pending) flags comment spammers among 197 thousand users on a social media platform accurately and preemptively. (2) Graph-induced Behavior Characterization: We derive new insights and knowledge that characterize certain behavior from graphs using statistical and algorithmic techniques. We present two examples: a study on identifying attributes of smoking and drinking abstinence and relapse from an addiction cessation social media community; and an exploratory analysis of how company insiders trade. Our work has already made impact to society: deployed by Symantec, AESOP is protecting over 120 million people worldwide from malware; EDOCS has been deployed by Yahoo and it guards multiple online communities from comment spammers.Ph.D