37 research outputs found

    SentiBench - a benchmark comparison of state-of-the-practice sentiment analysis methods

    Get PDF
    In the last few years thousands of scientific papers have investigated sentiment analysis, several startups that measure opinions on real data have emerged and a number of innovative products related to this theme have been developed. There are multiple methods for measuring sentiments, including lexical-based and supervised machine learning methods. Despite the vast interest on the theme and wide popularity of some methods, it is unclear which one is better for identifying the polarity (i.e., positive or negative) of a message. Accordingly, there is a strong need to conduct a thorough apple-to-apple comparison of sentiment analysis methods, \textit{as they are used in practice}, across multiple datasets originated from different data sources. Such a comparison is key for understanding the potential limitations, advantages, and disadvantages of popular methods. This article aims at filling this gap by presenting a benchmark comparison of twenty-four popular sentiment analysis methods (which we call the state-of-the-practice methods). Our evaluation is based on a benchmark of eighteen labeled datasets, covering messages posted on social networks, movie and product reviews, as well as opinions and comments in news articles. Our results highlight the extent to which the prediction performance of these methods varies considerably across datasets. Aiming at boosting the development of this research area, we open the methods' codes and datasets used in this article, deploying them in a benchmark system, which provides an open API for accessing and comparing sentence-level sentiment analysis methods

    The arms race: adversarial search defeats entropy used to detect malware

    Get PDF
    Malware creators have been getting their way for too long now. String-based similarity measures can leverage ground truth in a scalable way and can operate at a level of abstraction that is difficult to combat from the code level. At the string level, information theory and, specifically, entropy play an important role related to detecting patterns altered by concealment strategies, such as polymorphism or encryption. Controlling the entropy levels in different parts of a disk resident executable allows an analyst to detect malware or a black hat to evade the detection. This paper shows these two perspectives into two scalable entropy-based tools: EnTS and EEE. EnTS, the detection tool, shows the effectiveness of detecting entropy patterns, achieving 100% precision with 82% accuracy. It outperforms VirusTotal for accuracy on combined Kaggle and VirusShare malware. EEE, the evasion tool, shows the effectiveness of entropy as a concealment strategy, attacking binary-based state of the art detectors. It learns their detection patterns in up to 8 generations of its search process, and increments their false negative rate from range 0–9%, up to the range 90–98.7%

    Pribe a programmable interactive and batch mode text editor.

    No full text

    Graph-based algorithms and models for security, healthcare, and finance

    Get PDF
    Graphs (or networks) are now omnipresent, infusing into many aspects of society. This dissertation contributes unified graph-based algorithms and models to help solve large-scale societal problems affecting millions of individuals' daily lives, from cyber-attacks involving malware to tobacco and alcohol addiction. The main thrusts of our research are: (1) Propagation-based Graph Mining Algorithms: We develop graph mining algorithms to propagate information between the nodes to infer important details about the unknown nodes. We present three examples: AESOP (patented) unearths malware lurking in people's computers with 99.61% true positive rate at 0.01% false positive rate; our application of ADAGE on malware detection (patent-pending) enables to detect malware in a streaming setting; and EDOCS (patent-pending) flags comment spammers among 197 thousand users on a social media platform accurately and preemptively. (2) Graph-induced Behavior Characterization: We derive new insights and knowledge that characterize certain behavior from graphs using statistical and algorithmic techniques. We present two examples: a study on identifying attributes of smoking and drinking abstinence and relapse from an addiction cessation social media community; and an exploratory analysis of how company insiders trade. Our work has already made impact to society: deployed by Symantec, AESOP is protecting over 120 million people worldwide from malware; EDOCS has been deployed by Yahoo and it guards multiple online communities from comment spammers.Ph.D
    corecore