65 research outputs found

    Ionization In Diesel Combustion For On-Board Diagnostics And Engine Control

    Get PDF
    Diesel engines have been known for their high thermal efficiency and specific power output, but there is concern about engine-out NOx and particulate matter emissions. To meet the current emission standards, advanced diesel engines are fitted with electronically controlled fuel injection systems and sophisticated and expensive after-treatment devices. Further improvements are still needed to meet future goals in better fuel economy and the more stringent emission standards. In order to meet these goals, there is a need for the control of the combustion process to reduce engine-out emissions in real-time and reduce the demand on the after-treatment devices. This requires a signal indicative of the in-cylinder conditions to be fed in the ECU (Engine Control Unit). The most promising sensors in internal combustion engines are the cylinder gas pressure transducer and the combustion produced ion current sensor. Ion current probes have many advantages over pressure transducers because they are less expensive, more rugged, and are sensitive to the in cylinder gas temperature, and the composition of the combustion products. The ion current technique has been used in some SI engines, based on an understanding of the ionization produced from the combustion of a homogeneous charge. This is not the case in diesel engines where different types of flames are produced from the combustion of the heterogeneous mixture. This study investigates in details the characteristics of the ion current signal in diesel engines and its use for combustion diagnostics and feedback control of the engine. Experimental investigations and CFD simulation models are used to understand the characteristics of the ion current signal under different operating conditions. The investigations proved that the ion current signal carry basic information about combustion. 3-D mathematical models developed gave more insight into the distribution of the ionized species in the combustion chamber and enhanced the development of feedback control of the combustion process and enable the engine to autonomously operate properly on fuels of a wide range of physical and chemical properties. In addition, algorithms have been developed to use the signal for on-board diagnostics of different combustion, performance and engine-out emissions parameters

    Effect of prophylactic salpingectomy on ovarian function in premenopausal women in tertiary referral center

    Get PDF
    Background: Epithelial ovarian cancers (EOCs) are the most common cause of death from gynaecological malignancy. Serous ovarian carcinomas represent (68%) of Epithelial ovarian cancers, they are further divided into low-grade (type I) and high-grade (type II) serous ovarian carcinomas. There has been increasing evidence that fallopian tubes are considered the most important site of origin of pelvic high grade serous carcinoma. Salpingectomy is thought to be effective in reducing ovarian cancer risk in the future and prolonging average life expectancy, however, there are some concerns regarding ovarian function after elective salpingectomy in premenopausal women. The current study was carried out to assess the effect of salpingectomy on ovarian function in premenopausal women.Methods: 60 premenopausal cases were recruited and subjected to open abdominal hysterectomy without oophorectomy (for benign indications). Included cases were below 45 years, with documented active ovarian functions. Cases with genital malignancy, ovarian gross pathology and suspected or known ovarian failure were excluded. Cases were randomly allocated to one of two groups; group-A (where salpingectomy was performed), and group-B (where salpingectomy was not done). For all patients, ovarian functions were assessed prior operation, and at one and three months after operation using serum anti-Mullarian hormone (AMH) as well as early follicular antral follicular count (AFC), serum follicle stimulating hormone (FSH) and serum oestradiol (E2).Results: The mean pre-operative AFC, AMH, FSH, and E2 levels showed no significant changes after operation at one and three months postoperative follow up in both studied groups, denoting preserved ovarian function in both groups.Conclusions: Prophylactic salpingectomy is a safe and simple procedure that has no effect on ovarian reserve or function when performed in premenopausal women

    On the Performance of Quickest Detection Spectrum Sensing: The Case of Cumulative Sum

    Full text link
    Quickest change detection (QCD) is a fundamental problem in many applications. Given a sequence of measurements that exhibits two different distributions around a certain flipping point, the goal is to detect the change in distribution around the flipping point as quickly as possible. The QCD problem appears in many practical applications, e.g., quality control, power system line outage detection, spectrum reuse, and resource allocation and scheduling. In this paper, we focus on spectrum sensing as our application since it is a critical process for proper functionality of cognitive radio networks. Relying on the cumulative sum (CUSUM), we derive the probability of detection and the probability of false alarm of CUSUM based spectrum sensing. We show the correctness of our derivations using numerical simulations.Comment: This paper is accepted for publication in IEEE Communication Letters Jan 202

    Secret Key Generation Based on AoA Estimation for Low SNR Conditions

    Full text link
    In the context of physical layer security, a physical layer characteristic is used as a common source of randomness to generate the secret key. Therefore an accurate estimation of this characteristic is the core for reliable secret key generation. Estimation of almost all the existing physical layer characteristic suffer dramatically at low signal to noise (SNR) levels. In this paper, we propose a novel secret key generation algorithm that is based on the estimated angle of arrival (AoA) between the two legitimate nodes. Our algorithm has an outstanding performance at very low SNR levels. Our algorithm can exploit either the Azimuth AoA to generate the secret key or both the Azimuth and Elevation angles to generate the secret key. Exploiting a second common source of randomness adds an extra degree of freedom to the performance of our algorithm. We compare the performance of our algorithm to the algorithm that uses the most commonly used characteristics of the physical layer which are channel amplitude and phase. We show that our algorithm has a very low bit mismatch rate (BMR) at very low SNR when both channel amplitude and phase based algorithm fail to achieve an acceptable BMR

    DDPG Performance in THz Communications over Cascaded RISs: A Machine Learning Solution to the Over-Determined System

    Get PDF
    THz technology is considered a key element in 6G wireless communication because it provides ultra-high bandwidths, considerable capacities, and significant gains. However, wireless systems operating at high frequencies are faced with uncertainty and highly dynamic channels. Reflecting intelligent surfaces (RISs) can increase the range of the THz communication links and boost the rate at the receiver. In contrast to the existing literature, we investigate the scenario of multiple access multi-hop (cascaded) RISs uplink THz networks in a correlated channel environment. We show that our inspected cascaded RIS system is over-determined and that the rate maximization optimization problem is non-convex. To this end, we derive a closed-form expression of the received power and derive an analytical solution based on pseudo-inverse to obtain optimum RISs' phase shifts that maximize the received signal power and hence increase the rate. In addition, we utilize deep reinforcement learning (DRL), which is capable of solving non-convex optimization problems, to obtain the optimum cascaded RISs' phase shifts at the receiver taking into account the situation of the spatially correlated channels. Simulation results demonstrate that the DRL algorithm achieves higher rates than the mathematical sub-optimal method and the case of randomized phases

    Unleashing the secure potential of the wireless physical layer: Secret key generation methods

    Get PDF
    AbstractWithin the paradigm of physical layer security, a physical layer characteristic is used as a common source of randomness to generate the secret key. This key is then used to encrypt the data to hide information from eavesdroppers. In this paper, we survey the most recent common sources of randomness used to generate the secret key. We present the steps used to extract the secret key from the estimated common source of randomness. We describe the metrics used to evaluate the strength of the generated key. We follow that with a qualitative comparison between different common sources of randomness along with a proposed new direction which capitalizes on hybridization of sources of randomness. We conclude by a discussion about current open research problems in secret key generation

    Robust Secret Key Extraction from Channel Secondary Random Process

    Get PDF
    The vast majority of existing secret key generation protocols exploit the inherent randomness of the wireless channel as a common source of randomness. However, independent noise added at the receivers of the legitimate nodes affect the reciprocity of the channel. In this paper, we propose a new simple technique to generate the secret key that mitigates the effect of noise. Specifically, we exploit the estimated channel to generate a secondary random process (SRP) that is common between the two legitimate nodes. We compare the estimated channel gain and phase to a preset threshold. The moving differences between the locations at which the estimated channel gain and phase exceed the threshold are the realization of our SRP. We study the properties of our generated SRP and derive a closed form expression for the probability mass function of the realizations of our SRP. We simulate an orthogonal frequency division multiplexing (OFDM) system and show that our proposed technique provides a drastic improvement in the key bit mismatch rate (BMR) between the legitimate nodes when compared to the techniques that exploit the estimated channel gain or phase directly. In addition to that, the secret key generated through our technique is longer than that generated by conventional techniques. Moreover, we compute the conditional probabilities used to estimate the secret key capacity
    • …
    corecore