19 research outputs found

    A Bi-objective Optimization Study of an Acid-Base Flow Battery for High Efficiency and Improved Power Density

    Get PDF
    Electrical energy storage is critical for a broader penetration of renewable energies with intermittent nature, such as solar and wind energy. The Acid/Base Flow Battery (AB-FB) is a unique, sustainable, and environmental-friendly storage technology with high electrolyte solution energy density. The method relies on reversible electrodialytic technologies using bipolar membranes to transform electrical energy into chemical energy related to pH gradients and vice versa. The charge phase is accomplished by using bipolar membrane electrodialysis, whereas the discharge phase is performed via bipolar membrane reverse electrodialysis. In a previous work, we developed an advanced multi-scale process model (Culcasi et al., 2021b), revealing the importance of operating conditions and design features for the AB-FB battery performance. For the first time, the current work attempts to optimize the AB-FB. The net Round Trip Efficiency and average net discharge power density were maximized in a two-objective optimization. The ε-constraint method was used to construct curves of Pareto optimal solutions under various scenarios, thereby systematically assessing the effect of decision variables consisting of operating and design parameters. The gPROMS Model Builder® software package's optimization tool was used. This optimization study demonstrated that in a closed-loop configuration, optimized operating conditions and design features can be chosen to maximize net Round Trip Efficiency up to 64% and average net discharge power density up to 19.5 W m-2 using current commercial membranes

    EVALITA Evaluation of NLP and Speech Tools for Italian - December 17th, 2020

    Get PDF
    Welcome to EVALITA 2020! EVALITA is the evaluation campaign of Natural Language Processing and Speech Tools for Italian. EVALITA is an initiative of the Italian Association for Computational Linguistics (AILC, http://www.ai-lc.it) and it is endorsed by the Italian Association for Artificial Intelligence (AIxIA, http://www.aixia.it) and the Italian Association for Speech Sciences (AISV, http://www.aisv.it)

    A Review of Tibial Shaft Fracture Fixation Methods

    No full text
    Tibial shaft fractures are a commonly seen injury in orthopedic trauma patients. Fractures commonly occur following high energy mechanisms, such as motor vehicle collisions. There are multiple ways to stabilize tibial shaft fractures. Knowledge of the indications, contraindications, techniques, and complications associated with each technique allows the orthopedic surgeon to make the appropriate decision for each patient by providing both fracture and patient characteristics. This review discusses the indications, techniques, outcomes, and complications associated with intramedullary nailing, minimally invasive percutaneous plate osteosynthesis, and external fixation of tibial shaft fractures

    Evaluation of a Novel Precision Biotic on Enterohepatic Health Markers and Growth Performance of Broiler Chickens under Enteric Challenge

    No full text
    This study evaluated the supplementation of a precision biotic (PB) on the enterohepatic health markers and growth performance of broiler chickens undergoing an enteric challenge. In the first study, three treatments were used: Unchallenged Control (UC); Challenged Control (CC; dietary challenge and 10× dose of coccidia vaccine); and a challenged group supplemented with PB (1.3 kg/ton). In the second study, three treatments were used: control diet, diet supplemented with Avilamycin (10 ppm), and a diet supplemented with PB (0.9 kg/ton). All the birds were exposed to natural challenge composed by dietary formulation and reused litter from a coccidiosis positive flock. In Trial 1, PB decreased ileal histological damage, increased villi length, and the expression of SLC5A8 in ileal tissue versus CC; it reduced ileal expression of IL-1β compared to both UC and CC treatments. PB increased the expression of cell cycling gene markers CCNA2 and CDK2 in the ileum compared to CC. In Trial 2, PB improved the growth performance, intestinal lesion scores and intestinal morphology of broiler chickens. These results indicate that birds supplemented with PB are more resilient to enteric challenges, probably by its action in modulating microbiome metabolic pathways related to nitrogen metabolism and protein utilization

    A Novel Approach to Design and Evaluate BNCT Neutron Beams Combining Physical, Radiobiological, and Dosimetric Figures of Merit

    Get PDF
    Simple Summary Clinical potential and safety are presented as novel criteria to evaluate neutron beams designed for boron neutron capture therapy (BNCT). The presently used figures of merit are a set of physical quantities calculated in air, related to the neutron flux, the collimation, and the spectral characteristics. However, the capability of the beam to deliver an effective and safe treatment to patients should be the most important criterion in view of the clinical application. This work presents the design of a neutron beam produced by a proton accelerator coupled to a beryllium target and the use of new figures of merit to choose the best beam among different candidates. These figures of merit use tridimensional dosimetry simulated in phantoms and patients, to calculate the probability of tumor control without affecting healthy tissues, employing proper radiobiological models. Moreover, the dose absorbed by out-of-field healthy organs is used as a criterion to establish the safest beam for clinical treatments. Results show that beams that would be rejected by physical in-air quantities demonstrate a clinical performance comparable to existing neutron beams successfully used for patients, and that the presented criteria allow a clear selection of the most adequate beam among the ones presented. (1) Background:The quality of neutron beams for Boron Neutron Capture Therapy (BNCT) is currently defined by its physical characteristics in air. Recommendations exist to define whether a designed beam is useful for clinical treatment. This work presents a new way to evaluate neutron beams based on their clinical performance and on their safety, employing radiobiological quantities. (2) Methods: The case study is a neutron beam for deep-seated tumors from a 5 MeV proton beam coupled to a beryllium target. Physical Figures of Merit were used to design five beams; however, they did not allow a clear ranking of their quality in terms of therapeutic potential. The latter was then evaluated based on in-phantom dose distributions and on the calculation of the Uncomplicated Tumor Control Probability (UTCP). The safety of the beams was also evaluated calculating the in-patient out-of-beam dosimetry. (3) Results: All the beams ensured a UTCP comparable to the one of a clinical beam in phantom; the safety criterion allowed to choose the best candidate. When this was tested in the treatment planning of a real patient treated in Finland, the UTCP was still comparable to the one of the clinical beam. (4) Conclusions: Even when standard physical recommendations are not met, radiobiological and dosimetric criteria demonstrate to be a valid tool to select an effective and safe beam for patient treatment.Peer reviewe

    Synthesis and Characterization of Gd-Functionalized B<sub>4</sub>C Nanoparticles for BNCT Applications

    No full text
    Inorganic nanoparticles of boron-rich compounds represent an attractive alternative to boron-containing molecules, such as boronophenylalanine or boranes, for BNCT applications. This work describes the synthesis and biological activity of multifunctional boron carbide nanoparticles stabilized with polyacrylic acid (PAA) and a gadolinium (Gd)-rich solid phase. A fluorophore (DiI) was included in the PAA functionalization, allowing the confocal microscopy imaging of the nanoparticles. Analysis of the interaction and activity of these fluorescent Gd-containing B4C nanoparticles (FGdBNPs) with cultured cells was appraised using an innovative correlative microscopy approach combining intracellular neutron autoradiography, confocal, and SEM imaging. This new approach allows visualizing the cells, the FGdBNP, and the events deriving from the nuclear process in the same image. Quantification of 10B by neutron autoradiography in cells treated with FGdBNPs confirmed a significant accumulation of NPs with low levels of cellular toxicity. These results suggest that these NPs might represent a valuable tool for achieving a high boron concentration in tumoral cells

    Development of the ACSpect neutron spectrometer: Technological advance and response against an accelerator-based neutron beam

    No full text
    Advances in neutron-based radiation therapies such as Boron Neutron Capture Therapy (BNCT) pushes towards the development of new neutron spectrometers, whose key features are to be their practicability, reliability, energy resolution and detection range. The ACSpect is a novel neutron spectrometer based on a two-stages monolithic silicon telescope detector coupled to an organic scintillator working as an active neutron converter.This paper reports the latest developments of the ACSpect and the results of the measurements of an accelerator-based neutron beam moderated by AlF3. The AlF3 is a moderator material optimised to obtain an epithermal neutron beam for accelerator-based BNCT of deep seated tumours. The experiments carried out are the first neutron spectrometry of a neutron beam moderated by AlF3.The performances of the ACSpect have been compared against Monte Carlo simulations, literature data and the gold-standard neutron spectrometer DIAMON. While the agreement between experiments and simulations allowed to validate the Monte Carlo model used to simulate the new moderator material, the agreement between literature data, ACSpect and DIAMON results confirmed the ACSpect as a compact and relatively easy-to-use high-resolution neutron spectrometer, capable of reliably operating in the energy range 250 keV - 4 MeV

    Surgical Treatment of Pediatric Scoliosis: Historical Origins and Review of Current Techniques

    No full text
    The treatment of scoliosis has been explored and debated in medicine since the first recorded texts. Scoliosis treatment has shifted over time from external modalities, such as traction and bracing, to internal stabilization techniques that leverage surgical advances. Surgical fixation constructs can generally be separated into two different modalities: dynamic vs. static constructs. For skeletally immature individuals with progressive deformities, surgical options range from traditional or magnetically controlled growing rods to vertebral body staples or tethering. For individuals who have reached skeletal maturity, many devices have been developed that provide static length constructs. Understanding the surgical options available is critical for the appropriate management of this varied patient population. With this article, we sought to provide a summary of past and present techniques and devices used in the treatment of scoliosis

    Pancreatic cancer modeling using retrograde viral vector delivery and in vivo CRISPR/Cas9-mediated somatic genome editing

    No full text
    Pancreatic ductal adenocarcinoma (PDAC) is a genomically diverse, prevalent, and almost invariably fatal malignancy. Although conventional genetically engineered mouse models of human PDAC have been instrumental in understanding pancreatic cancer development, these models are much too labor-intensive, expensive, and slow to perform the extensive molecular analyses needed to adequately understand this disease. Here we demonstrate that retrograde pancreatic ductal injection of either adenoviral-Cre or lentiviral-Cre vectors allows titratable initiation of pancreatic neoplasias that progress into invasive and metastatic PDAC. To enable in vivo CRISPR/Cas9-mediated gene inactivation in the pancreas, we generated a Cre-regulated Cas9 allele and lentiviral vectors that express Cre and a single-guide RNA. CRISPR-mediated targeting of Lkb1 in combination with oncogenic Kras expression led to selection for inactivating genomic alterations, absence of Lkb1 protein, and rapid tumor growth that phenocopied Cre-mediated genetic deletion of Lkb1. This method will transform our ability to rapidly interrogate gene function during the development of this recalcitrant cancer
    corecore