865 research outputs found

    Observability of Forming Planets and their Circumplanetary Disks I. -- Parameter Study for ALMA

    Full text link
    We present mock observations of forming planets with ALMA. The possible detections of circumplanetary disks (CPDs) were investigated around planets of Saturn, 1, 3, 5, and 10 Jupiter-masses that are placed at 5.2 AU from their star. The radiative, three dimensional hydrodynamic simulations were then post-processed with RADMC3D and the ALMA Observation Simulator. We found that even though the CPDs are too small to be resolved, they are hot due to the accreting planet in the optically thick limit, therefore the best chance to detect them with continuum observations in this case is at the shortest ALMA wavelengths, such as Band 9 (440 microns). Similar fluxes were found in the case of Saturn and Jupiter-mass planets, as for the 10 MJup\mathrm{M_{Jup}} gas-giant, due to temperature weighted optical depth effects: when no deep gap is carved, the planet region is blanketed by the optically thick circumstellar disk leading to a less efficient cooling there. A test was made for a 52 AU orbital separation, showed that optically thin CPDs are also detectable in band 7 but they need longer integration times (>>5hrs). Comparing the gap profiles of the same simulation at various ALMA bands and the hydro simulation confirmed that they change significantly, first because the gap is wider at longer wavelengths due to decreasing optical depth; second, the beam convolution makes the gap shallower and at least 25% narrower. Therefore, caution has to be made when estimating planet masses based on ALMA continuum observations of gaps.Comment: Accepted for publication at MNRAS. Typos are corrected since previous version. 11 pages, 5 tables, 4 figure

    The date mussel Lithophaga lithophaga: Biology, ecology and multiple impacts of its illegal fishery

    Get PDF
    The date mussel Lithophaga lithophaga is an edible endolithic bivalve, protected by the EU Habitats Directive and other international agreements, living inside carbonate rocks. Its illegal harvesting is carried by breaking the rocks where the bivalve grows. The impact has cascade consequences as it causes permanent changes in the substrate characteristics, the removal of benthic species, a shift from highly complex to structurally simplified habitats. As a result, the rich biodiversity of rocky reefs turns into a biological desert, named “barren”. Along with the over exploitation of fish, this practice leads to the increase of sea urchin density and grazing pressure on habitats, hampering the resilience of the associated biodiversity and functions. This paper summarizes the information on date mussel biology, ecology, ecotoxicology, fishery and the legal framework regulating its protection. Evidence indicates that illegal harvesting is still operated and widespread along the Mediterranean and has huge costs in terms of loss of natural capital and ecosystem services, and in terms of active ecological restoration. Two case study areas (the Sorrento and Salento peninsulas) were selected to assess the economic costs of this practice. Tangible economic costs in terms of ecosystems services' loss are huge (from ca. 35,000 to more than 400,000 euros/year in 6.6 km of Sorrento and ca. 1.8 million euros/year along the 69 km of Salento). These costs are, on average, ca. 30 times lower than those of ecosystem restoration. Data mining from websites indicates that date mussels are presently commercialized in hundreds of restaurants in Greece, Balkan countries, Spain and Italy, favoured also by the lack of appropriate consumer information. This practice should be controlled and contrasted at local scale, enforced by national legislations, and implemented by transnational initiatives. Social campaigns are needed to increase public awareness of the serious consequences of date-mussel fishery and consumption

    AB0901 PREVALENCE OF OSTEOPOROSIS IN ITALIAN POSTMENOPAUSAL WOMEN ACCORDING TO DEFRA ALGORITHM

    Get PDF
    Background:Osteoporosis is a recognized health problem and the burden of the disease is mostly associated with the occurrence of hip and vertebral fracture.Objectives:This study was aimed at evaluating the prevalence of osteoporosis in Italian postmenopausal women, defined by DeFRA calculation as a 10 years fracture risk equal or higher than 20%.Methods:This is a monocenter cohort study evaluating 1850 post-menopausal women aged 50 years and older. All the participants were evaluated as far as anthropometrics. Defra questionnaire was administered and calculated with bone mineral density (DXA) measured at lumbar spine and femoral neck.Results:The prevalence of osteoporosis as assessed by DeFRA was 29.8% in the whole population, according to literature. The frequency of a risk fracture equal or higher than 20% varied from 7.9% in the group aged 50-59 years to 35% in subjects aged >80. Among clinical risk factors for fracture, the presence of a previous fracture (spine primarily) was the most commonly observed.Conclusion:Our data showed that about one third of post-menopausal women aged 50 and older in Italy has osteoporosis on the basis of DeFRA algorithm, with a high 10 years fracture risk. A previous fracture is the most common risk factor. The data should be considered in relation to the need to increase prevention strategies and therapeutic intervention.Disclosure of Interests:None declare

    Are we ready for scaling up restoration actions? An insight from Mediterranean macroalgal canopies

    Get PDF
    Extensive loss of macroalgal forests advocates for large-scale restoration interventions, to compensate habitat degradation and recover the associated ecological functions and services. Yet, restoration attempts have generally been limited to small spatial extensions, with the principal aim of developing efficient restoration techniques. Here, the success of outplanting Cystoseira amentacea v. stricta germlings cultured in aquaria was experimentally explored at a scale of tens of kms, by means of a multifactorial experimental design. In the intertidal rocky shores of SE Italy, locations with a continuous distribution for hundreds of meters or with few thalli forming patches of few centimeters of C. amentacea canopy were selected. In each location, the effects of adult conspecifics and the exclusion of macrograzers (salema fish and sea urchins) on the survival of germlings were tested. We evaluated the most critical determinants of mortality for germlings, including the overlooked pressure of mesograzers (e.g. amphipods, small mollusks, polychaetes). Despite the high mortality observed during outplanting and early settlement stages, survival of C. amentacea germlings was consistently favored by the exclusion of macrograzers, while the presence of adult conspecifics had no effects. In addition, the cost analysis of the interventions showed the feasibility of the ex-situ method, representing an essential tool for preserving Cystoseira forests. Large scale restoration is possible but requires baseline information with an in-depth knowledge of the species ecology and of the areas to be restored, together with the development of specific cultivation protocols to make consistently efficient restoration interventions

    CO2 Flushing Triggers Paroxysmal Eruptions at Open Conduit Basaltic Volcanoes

    Get PDF
    Open conduit volcanoes erupt with the highest frequency on Earth. Their activity is characterized by an outgassing flux that largely exceeds the gas that could be released by the erupted magma; and by frequent small explosions intercalated by larger events that pose a significant risk to locals, tourists, and scientists. Thus, identifying the signs of an impending larger explosion is of utmost importance for the mitigation of volcanic hazard. Larger explosive events have been associated with the sudden ascent of volatile rich magmas, however, where and why magma accumulates within the plumbing system remains unclear. Here we show that the interaction between CO2-rich fluids and magma spontaneously leads to the accumulation of volatile-rich, low density and gravitationally unstable magma at depth, without the requirement of permeability barriers. CO2-flushing forces the exsolution of water and the increase of magma viscosity, which proceeds from the bottom of the magma column upward. This rheological configuration unavoidably leads to the progressive thickening of a gas-rich and low density (i.e., gravitationally unstable) layer at the bottom of the feeding system. Our calculations account for observations, gas monitoring and petrological data; moreover, they provide a basis to trace the approach to deeply triggered large or paroxysmal eruptions and estimate their size from monitoring data. Our model is finally applied to Stromboli volcano, an emblematic example of open conduit volcano, but can be applied to any other open conduit volcano globally and offers a framework to anticipate the occurrence of unexpectedly large eruptions

    . New ground-based lidar enables volcanic CO2 flux measurements

    Get PDF
    There have been substantial advances in the ability to monitor the activity of hazardous volcanoes in recent decades. However, obtaining early warning of eruptions remains challenging, because the patterns and consequences of volcanic unrests are both complex and nonlinear. Measuring volcanic gases has long been a key aspect of volcano monitoring since these mobile fluids should reach the surface long before the magma. There has been considerable progress in methods for remote and in-situ gas sensing, but measuring the flux of volcanic CO2—the most reliable gas precursor to an eruption—has remained a challenge. Here we report on the first direct quantitative measurements of the volcanic CO2 flux using a newly designed differential absorption lidar (DIAL), which were performed at the restless Campi Flegrei volcano. We show that DIAL makes it possible to remotely obtain volcanic CO2 flux time series with a high temporal resolution (tens of minutes) and accuracy (<30%). The ability of this lidar to remotely sense volcanic CO2 represents a major step forward in volcano monitoring, and will contribute improved volcanic CO2 flux inventories. Our results also demonstrate the unusually strong degassing behavior of Campi Flegrei fumaroles in the current ongoing state of unrest

    A Roadmap for the Restoration of Mediterranean Macroalgal Forests

    Get PDF
    Canopy-forming macroalgae play a crucial role in coastal primary production and nutrient cycling, providing food, shelter, nurseries, and habitat for many vertebrate and invertebrate species. However, macroalgal forests are in decline in various places and natural recovery is almost impossible when populations become locally extinct. Hence, active restoration emerges as the most promising strategy to rebuild disappeared forests. In this regard, significant efforts have been made by several EU institutions to research new restoration tools for shallow and mesophotic reef habitats (e.g., MERCES EU project, AFRIMED, and ROCPOP-life) and effective techniques have subsequently been proposed to promote self-sustaining populations. Recent research indicates that macroalgal forest recovery requires a broad spectrum of measures, ranging from mitigating human impacts to restoring the most degraded populations and habitats, and that the viability of large restoration actions is compromised by ongoing human pressures (e.g., pollution, overgrazing, and climate change). We propose a roadmap for Mediterranean macroalgal restoration to assist researchers and stakeholders in decision-making, considering the most effective methods in terms of cost and cost-effectiveness, and taking background environmental conditions and potential threats into account. Last, the challenges currently faced by the restoration of rocky coastal ecosystems under changing climate conditions are also discussed

    Excess degassing drives long-term volcanic unrest at Nevado del Ruiz

    Get PDF
    This study combines volcanic gas compositions, SO2 flux and satellite thermal data collected at Nevado del Ruiz between 2018 and 2021. We find the Nevado del Ruiz plume to have exhibited relatively steady, high CO2 compositions (avg. CO2/ST ratios of 5.4 ± 1.9) throughout. Our degassing models support that the CO2/ST ratio variability derives from volatile exsolution from andesitic magma stored in the 1–4&nbsp;km depth range. Separate ascent of CO2-rich gas bubbles through shallow (&lt; 1&nbsp;km depth), viscous, conduit resident magma causes the observed excess degassing. We infer that degassing of ~ 974 mm3 of shallow (1–4&nbsp;km) stored magma has sourced the elevated SO2 degassing recorded during 2018–2021 (average flux ~ 1548 t/d). Of this, only &lt; 1 mm3 of magma have been erupted through dome extrusion, highlighting a large imbalance between erupted and degassed magma. Escalating deep CO2 gas flushing, combined with the disruption of passive degassing, through sudden accumulation and pressurization of bubbles due to lithostatic pressure, may accelerate volcanic unrest and eventually lead to a major eruption

    Volcanic CO2 tracks the incubation period of basaltic paroxysms

    Get PDF
    The ordinarily benign activity of basaltic volcanoes is periodically interrupted by violent paroxysmal explosions ranging in size from Hawaiian to Plinian in the most extreme examples. These paroxysms often occur suddenly and with limited or no precursors, leaving their causal mechanisms still incompletely understood. Two such events took place in summer 2019 at Stromboli, a volcano otherwise known for its persistent mild open-vent activity, resulting in one fatality and damage to infrastructure. Here, we use a post hoc analysis and reinterpretation of volcanic gas compositions and fluxes acquired at Stromboli to show that the two paroxysms were preceded by detectable escalations in volcanic plume CO2 degassing weeks to months beforehand. Our results demonstrate that volcanic gas CO2 is a key driver of explosions and that the preparatory periods ahead of explosions in basaltic systems can be captured by precursory CO2 leakage from deeply stored mafic magma
    • …
    corecore