14 research outputs found

    On ecological conceptualizations of perceptual systems and action systems

    Get PDF
    This article examines Gibson's concept of perceptual system and Reed's concept of action system. After discussing several assumptions underlying these concepts, the ontological status of these systems is considered. It is argued that perceptual systems and action systems should be conceptualized neither as parts of an animal's body nor as softly (temporarily) assembled devices; rather, they are best understood as animals' abilities to achieve functional relationships, that is, as dispositional properties. This conceptualization entails that these systems are relatively permanent properties of the animal that are causally supported by, though not identical to, anatomical substrates. Further, it entails that it is the animal that perceives and acts, not its perceptual and action systems

    Moral Beauty During the COVID-19 Pandemic: Prosocial Behavior Among Adolescents and the Inspiring Role of the Media

    No full text
    In this study, we examined whether adolescents helped others during the COVID-19 pandemic and how stories in the media inspired them in doing so. Using an online daily diary design, 481 younger adolescents (M = 15.29, SD = 1.76) and 404 older adolescents (M = 21.48, SD = 1.91) were followed for 2 weeks. Findings from linear mixed effects models demonstrated that feelings of being moved by stories in the media were related to giving emotional support to family and friends, and to helping others, including strangers. Exposure to COVID-19 news and information was found to spark efforts to support and help as well and keeping physical distance in line with the advised protective behaviors against COVID-19. Moreover, helping others was related to increased happiness. Overall, the findings of this study highlight the potential role of the media in connecting people in times of crisis

    Differential expression of agrin in renal basement membranes as revealed by domain-specific antibodies

    No full text
    We determined the specificity of two hamster monoclonal antibodies and a sheep polyclonal antiserum against heparan sulfate proteoglycan isolated from rat glomerular basement membrane. The antibodies were characterized by enzyme-linked immunosorbent assay on various basement membrane components and immunoprecipitation with heparan sulfate proteoglycan with or without heparitinase pre-treatment. These experiments showed that the antibodies specifically recognize approximately 150-, 105-, and 70-kDa core proteins of rat glomerular basement membrane heparan sulfate proteoglycan. Recently, we showed that agrin is a major heparan sulfate proteoglycan in the glomerular basement membrane (Groffen, A. J. A., Ruegg, M. A., Dijkman, H. B. P. M., Van der Velden, T. J., Buskens, C. A., van den Born, J., Assmann, K. J. M., Monnens, L. A. H., Veerkamp, J. H., and van den Heuvel, L. P. W. J. (1998) J. Histochem. Cytochem. 46, 19-27). Therefore, we tested whether our antibodies recognize agrin. To this end, we evaluated staining of Chinese hamster ovary cells transfected with constructs encoding full-length or the C-terminal half of rat agrin by analysis on a fluorescence-activated cell sorter. Both hamster monoclonals and the sheep antiserum clearly stained cells transfected with the construct encoding full-length agrin, whereas wild type cells and cells transfected with the construct encoding the C-terminal part of agrin were not recognized. A panel of previously characterized monoclonals, directed against C-terminal agrin, clearly stained cells transfected with either of the constructs but not wild type cells. This indicates that both hamster monoclonals and the sheep antiserum recognize epitopes on the N- terminal half of agrin. By immunohistochemistry on rat renal tissue, we compared distribution of N-terminal agrin with that of C-terminal agrin. The monoclonal antibodies against C-terminal agrin stained almost exclusively the glomerular basement membrane, whereas the anti-N-terminal agrin antibodies recognized all renal basement membranes, including tubular basement membranes. Based on these results, we hypothesize that full-length agrin is predominantly expressed in the glomerular basement membrane, whereas in most other renal basement membranes a truncated isoform of agrin is predominantly found that misses (part of) the C terminus, which might be due to alternative splicing and/or posttranslational processing. The possible significance of this finding is discussed

    Comparison of three methods for isolation of urinary microvesicles to identify biomarkers of nephrotic syndrome.

    Get PDF
    Contains fulltext : 89884.pdf (publisher's version ) (Closed access)Urinary microvesicles, such as 40-100 nm exosomes and 100-1000 nm microparticles, contain many proteins that may serve as biomarkers of renal disease. Microvesicles have been isolated by ultracentrifugation or nanomembrane ultrafiltration from normal urine; however, little is known about the efficiency of these methods in isolating microvesicles from patients with nephrotic-range proteinuria. Here we compared three techniques to isolate microvesicles from nephrotic urine: nanomembrane ultrafiltration, ultracentrifugation, and ultracentrifugation followed by size-exclusion chromatography (UC-SEC). Highly abundant urinary proteins were still present in sufficient quantity after ultrafiltration or ultracentrifugation to blunt detection of less abundant microvesicular proteins by MALDI-TOF-TOF mass spectrometry. The microvesicular markers neprilysin, aquaporin-2, and podocalyxin were highly enriched following UC-SEC compared with preparations by ultrafiltration or ultracentrifugation alone. Electron microscopy of the UC-SEC fractions found microvesicles of varying size, compatible with the presence of both exosomes and microparticles. Thus, UC-SEC following ultracentrifugation to further enrich and purify microparticles facilitates the search for prognostic biomarkers that might be used to predict the clinical course of nephrotic syndrome.1 oktober 201
    corecore