72 research outputs found

    DNA Methylation in Development

    Get PDF
    Early embryonic development is a very precise and complicated process. When a sperm meets an egg, a series of well-orchestrated changes take place, which end up with distinct types of cells that make up an organism. Cells start from a pluripotent state and differentiate without changes in DNA sequence. A differentiated cell shares the same DNA sequence with the zygote from which it is descended (mammalian B and T cells being an exception). The diverse functions of different cells are due to tissue-specific patterns of gene expression, which are established during development; once the fates of the cells are decided, they will be maintained faithfully through cell divisions. Hence it is reasonable to assert that development is, by definition, an epigenetic process (Reik, 2007). The specific gene expression programs in differentiated cells are regulated by a more flexible system, which dynamically switches on and off the genes for maintaining homeostasis or responding to environmental changes. Epigenetics is defined as “the study of heritable changes in genome function that occur without alterations to the DNA sequence” (Probst, et al., 2009). Epigenetics has been suggested as the key regulatory system in early development. Mechanistically, epigenetic regulation involves the covalent modification of chromatin components such as DNA methylation and histone modifications (acetylation, methylation and phosphorylation are the best characterized). Short and long non-coding RNAs are also part of the epigenetic regulatory system because of their role in targeting the chromatin modifications within the genome (Hawkins & Morris, 2008; Morris, 2009a). DNA methylation at the cytosine residue of CpG dinucleotides is the most studied epigenetic modification in mammals. Its effects on genome function underlie a number of physiological phenomena such as genomic imprinting and X chromosome inactivation, and it also contributes to the genesis of human cancers and to aging. CpG methylation was the only known chemical modification of mammalian genomic DNA with an epigenetic role before the discovery of 5-hydroxymethylcytosine that will be discussed later (Haluskova, 2010; Ohgane, et al., 2008). CpG methylation is stable, heritable and reversible, which fulfils the requirement for a dynamic regulation system for development. DNA methylation is most vulnerable to the environment during early development, because the genome methylation pattern is established during this stage and the DNA synthetic rate is very high in the early embryo. In mammals, proper DNA methylation is essential for normal development. Aberrant methylation patterns are involved in various developmental pathological phenomena and even diseases in adult life that are known under the rubric: the Developmental Origin of Health and Disease (DOHaD) (Waterland & Michels, 2007). In this chapter, we will discuss the biochemistry of DNA CpG methylation including the enzymes catalyzing the process and the controversial pathways of DNA demethylation. The dynamics of DNA methylation in early development will be covered as well as the role of methylation in cell-lineage determination, imprinting and the genesis of germ cells. We will also review the evidence supporting the importance of DNA methylation in DOHaD

    Evaluation of ADAM-12 as a diagnostic biomarker of ectopic pregnancy in women with a pregnancy of unknown location

    Get PDF
    Ectopic pregnancy (EP) remains the most life-threatening acute condition in modern gynaecology. It remains difficult to diagnose early and accurately. Women often present at emergency departments in early pregnancy with a 'pregnancy of unknown location' (PUL) and diagnosis/exclusion of EP is challenging due to a lack of reliable biomarkers. Recent studies suggest that serum levels of a disintegrin and metalloprotease protein-12 (ADAM-12) can be used differentiate EP from viable intrauterine pregnancy (VIUP). Here we describe a prospective study evaluating the performance of ADAM-12 in differentiating EP from the full spectrum of alternative PUL outcomes in an independent patient cohort.Sera were collected from 120 patients at their first clinical presentation with a PUL and assayed for ADAM-12 by ELISA. Patients were categorized according to final pregnancy outcomes. Serum ADAM-12 concentrations were increased in women with histologically-confirmed EP (median 442 pg/mL; 25%-75% percentile 232-783 pg/mL) compared to women with VIUP (256 pg/mL; 168-442 pg/mL) or miscarriage (192 pg/mL; 133-476 pg/mL). Serum ADAM-12 did not differentiate histologically-confirmed EP from spontaneously resolving PUL (srPUL) (416 pg/mL; 154-608 pg/mL). The diagnostic potential of ADAM-12 was only significant when 'ambiguous' PUL outcomes were excluded from the analysis (AROC = 0.6633; P = 0.03901).When measured in isolation, ADAM-12 levels had limited value as a diagnostic biomarker for EP in our patient cohort. The development of a reliable serum biomarker-based test for EP remains an ongoing challenge

    Micro-computed tomography assisted distal femur metaphyseal blunt punch compression for determining trabecular bone strength in mice

    Get PDF
    Shorter generation time and the power of genetic manipulation make mice an ideal model system to study bone biology as well as bone diseases. However their small size presents a challenge to perform strength measurements, particularly of the weight-bearing cancellous bone in the murine long bones. We recently developed an improved method to measure the axial compressive strength of the cancellous bone in the distal femur metaphysis in mice. Transverse micro-computed tomography image slices that are 7”m thick were used to locate the position where the epiphysis-metaphysis transition occurs. This enabled the removal of the distal femur epiphysis at the exact transition point exposing the full extent of metaphyseal trabecular bone, allowing more accurate and consistent measurement of its strength. When applied to a murine model system consisting of five month old male wild-type (WT) and Ca(2+)/calmodulin dependent protein kinase kinase 2 (CaMKK2) knockout (KO) Camkk2(-/-) mice that possess recorded differences in trabecular bone volume, data collected using this method showed good correlation between bone volume fraction and strength of trabecular bone. In combination with micro-computed tomography and histology, this method will provide a comprehensive and consistent assessment of the microarchitecture and tissue strength of the cancellous bone in murine mouse models

    Birth and Neonatal Transition in the Guinea Pig: Experimental Approaches to Prevent Preterm Birth and Protect the Premature Fetus

    Get PDF
    The guinea pig (Cavia porcellus) displays many features of gestational physiology that makes it the most translationally relevant rodent species. Progesterone production undergoes a luteal to placental shift as in human pregnancy with levels rising during gestation and with labor and delivery occurring without a precipitous decline in maternal progesterone levels. In contrast to other laboratory rodents, labor in guinea pigs is triggered by a functional progesterone withdrawal, which involves the loss of uterine sensitivity to progesterone like in women. In both species the amnion membrane is a major source of labor-inducing prostaglandins, which promote functional progesterone withdrawal by modifying myometrial progesterone receptor expression. These similar features appear to result from convergent evolution rather than closer evolutionally relationship to primates compared to other rodents. Nevertheless, the similarities in the production, metabolism and actions of progesterone and prostaglandins allow information gained in pregnant guinea pigs to be extended to pregnant women with confidence. This includes exploring the effects of pregnancy complications including growth restriction and the mechanisms by which stressful conditions increase the incidence of preterm labor. The relatively long gestation of the guinea pig and the maturity of the pups at birth particularly in brain development means that a greater proportion of brain development happens in utero. This allows adverse intrauterine conditions to make a sustained impact on the developing brain like in compromised human pregnancies. In addition, the brain is exposed to a protective neurosteroid environment in utero, which has been suggested to promote development in the guinea pig and the human. Moreover, in utero stresses that have been shown to adversely affect long term neurobehavioral outcomes in clinical studies, can be modeled successfully in guinea pigs. Overall, these parallels to the human have led to increasing interest in the guinea pig for translational studies of treatments and therapies that potentially improve outcomes following adverse events in pregnancy and after preterm birth

    Cervical Mucus Properties Stratify Risk for Preterm Birth

    Get PDF
    Background: Ascending infection from the colonized vagina to the normally sterile intrauterine cavity is a well-documented cause of preterm birth. The primary physical barrier to microbial ascension is the cervical canal, which is filled with a dense and protective mucus plug. Despite its central role in separating the vaginal from the intrauterine tract, the barrier properties of cervical mucus have not been studied in preterm birth. Methods and Findings: To study the protective function of the cervical mucus in preterm birth we performed a pilot case-control study to measure the viscoelasticity and permeability properties of mucus obtained from pregnant women at high-risk and low-risk for preterm birth. Using extensional and shear rheology we found that cervical mucus from women at high-risk for preterm birth was more extensible and forms significantly weaker gels compared to cervical mucus from women at low-risk of preterm birth. Moreover, permeability measurements using fluorescent microbeads show that high-risk mucus was more permeable compared with low-risk mucus. Conclusions: Our findings suggest that critical biophysical barrier properties of cervical mucus in women at high-risk for preterm birth are compromised compared to women with healthy pregnancy. We hypothesize that impaired barrier properties of cervical mucus could contribute to increased rates of intrauterine infection seen in women with preterm birth. We furthermore suggest that a robust association of spinnbarkeit and preterm birth could be an effectively exploited biomarker for preterm birth prediction.Massachusetts Institute of Technology. Charles E. Reed Faculty Initiative FundBurroughs Wellcome Fund (Preterm Birth Research Grant)National Science Foundation (U.S.). Graduate Research Fellowship Progra

    A computational model of lipopolysaccharide-induced nuclear factor kappa B activation:a key signalling pathway in infection-induced preterm labour

    Get PDF
    Preterm birth is the single biggest cause of significant neonatal morbidity and mortality, and the incidence is rising. Development of new therapies to treat and prevent preterm labour is seriously hampered by incomplete understanding of the molecular mechanisms that initiate labour at term and preterm. Computational modelling provides a new opportunity to improve this understanding. It is a useful tool in (i) identifying gaps in knowledge and informing future research, and (ii) providing the basis for an in silico model of parturition in which novel drugs to prevent or treat preterm labour can be "tested". Despite their merits, computational models are rarely used to study the molecular events initiating labour. Here, we present the first attempt to generate a dynamic kinetic model that has relevance to the molecular mechanisms of preterm labour. Using published data, we model an important candidate signalling pathway in infection-induced preterm labour: that of lipopolysaccharide (LPS) -induced activation of Nuclear Factor kappa B. This is the first model of this pathway to explicitly include molecular interactions upstream of Nuclear Factor kappa B activation. We produced a formalised graphical depiction of the pathway and built a kinetic model based on ordinary differential equations. The kinetic model accurately reproduced published in vitro time course plots of Lipopolysaccharide-induced Nuclear Factor kappa B activation in mouse embryo fibroblasts. In this preliminary work we have provided proof of concept that it is possible to build computational models of signalling pathways that are relevant to the regulation of labour, and suggest that models that are validated with wet-lab experiments have the potential to greatly benefit the field

    How does progesterone relax the uterus in pregnancy?

    No full text
    Most of us owe our existence to the calming influence of progesterone on our mother's uterine muscle (the myometrium). By the third trimester of pregnancy, the myometrium is akin to a sleeping giant. Once awakened, it becomes one of the strongest muscles in the human body to facilitate birth. How progesterone calms the myometrium for most of pregnancy is a major unanswered question in obstetrics

    Mammalian labor: variations on a theme by amniota

    No full text
    In this month’s issue of Endocrinology, Wada et al report on the “Role of vascular endothelial growth factor (VEGF) in maintenance of pregnancy in mice.” It’s a beautifully written report of a carefully performed series of experiments that strongly implicate a fall in the corpus luteum production of VEGF in the onset of labor in mice. However, the most intriguing and insightful aspect is the focus within the title on pregnancy maintenance

    Regulation of inflammatory genes in decidual cells: Involvement of the bromodomain and extra-terminal family proteins.

    No full text
    The decidua undergoes proinflammatory activation in late pregnancy, promoting labor. Bromodomain and Extra-Terminal (BET) family proteins interact with acetylated histones and may control gene expression in inflammation. Here, we assessed whether BETs are involved in inflammatory gene regulation in human decidual cells. We have treated primary cultures of decidual stromal cells (DSCs) from term pregnancies with endotoxin (LPS) and measured the expression of a panel of pro-and anti-inflammatory genes. BET involvement was assessed using the selective BET inhibitors (+)-JQ1 and I-BET-762 or the negative control compound (-)-JQ1. Histone 3 and -4 acetylation and BETs binding at the target gene promoters were determined to assess whether these processes are involved in the actions of LPS, BETs, and BET inhibitors. LPS increased the expression of the proinflammatory (PTGS2, IL6, CXCL8/IL8, TNF) and the anti-inflammatory (IL10, IDO1) genes of the panel. The constitutively expressed inflammatory genes (PTGS1, PTGES) were unaffected. The BET inhibitors, but not the control compound, reduced the basal and LPS-induced expression of PTGS1, PTGS2, IL6, CXCL8/IL8, IL10, and IDO1. TNF expression was not changed by BET inhibition. The dominant BETs were Bromodomain-containing protein -2 (BRD2) and -4L (BRD4L) in DSCs. LPS increased histone 4 acetylation at the CXCL8/IL8 and TNF promoters and histone 3 and -4 acetylation at the IDO1 promoter, while (+)-JQ1 abrogated histone acetylation at several promoters. Overall, histone acetylation and promoter binding of BETs showed no consistent relationship with gene expression across the gene panel and the treatments. BET proteins, predominantly BRD2 and BRD4L, control critical pro- and anti-inflammatory genes in DSCs. TNF induction exemplifies a BET-independent pathway. Changing histone acetylation at the promoters is not a general obligatory requirement for inflammatory gene expression in response to LPS. BETs likely act at chromatin loci separate from the examined promoters. BET inhibitors may block decidual activation at labor
    • 

    corecore