154 research outputs found
On the indistinguishability of Raman photons
We provide a theoretical framework to study the effect of dephasing on the
quantum indistinguishability of single photons emitted from a coherently driven
cavity QED -system. We show that with a large excited-state detuning,
the photon indistinguishability can be drastically improved provided that the
fluctuation rate of the noise source affecting the excited state is fast
compared with the photon emission rate. In some cases a spectral filter is
required to realize this improvement, but the cost in efficiency can be made
small.Comment: 18 pages, 3 figures, final versio
Spin-flip and spin-conserving optical transitions of the nitrogen-vacancy centre in diamond
We map out the first excited state sublevel structure of single nitrogen-vacancy (NV) colour centres in diamond. The excited state is an orbital doublet where one branch supports an efficient cycling transition, while the other can simultaneously support fully allowed optical Raman spin-flip transitions. This is crucial for the success of many recently proposed quantum information applications of the NV defects. We further find that an external electric field can be used to completely control the optical properties of a single centre. Finally, a group theoretical model is developed that explains the observations and provides good physical understanding of the excited state structure
Coherent Population Trapping of Single Spins in Diamond Under Optical Excitation
Coherent population trapping is demonstrated in single nitrogen-vacancy
centers in diamond under optical excitation. For sufficient excitation power,
the fluorescence intensity drops almost to the background level when the laser
modulation frequency matches the 2.88 GHz splitting of the ground states. The
results are well described theoretically by a four-level model, allowing the
relative transition strengths to be determined for individual centers. The
results show that all-optical control of single spins is possible in diamond.Comment: minor correction
Efficient coupling of photons to a single molecule and the observation of its resonance fluorescence
Single dye molecules at cryogenic temperatures display many spectroscopic
phenomena known from free atoms and are thus promising candidates for
fundamental quantum optical studies. However, the existing techniques for the
detection of single molecules have either sacrificed the information on the
coherence of the excited state or have been inefficient. Here we show that
these problems can be addressed by focusing the excitation light near to the
absorption cross section of a molecule. Our detection scheme allows us to
explore resonance fluorescence over 9 orders of magnitude of excitation
intensity and to separate its coherent and incoherent parts. In the strong
excitation regime, we demonstrate the first observation of the Mollow triplet
from a single solid-state emitter. Under weak excitation we report the
detection of a single molecule with an incident power as faint as 150 attoWatt,
paving the way for studying nonlinear effects with only a few photons.Comment: 6 figure
Low-temperature tapered-fiber probing of diamond NV ensembles coupled to GaP microcavities
In this work we present a platform for testing the device performance of a
cavity-emitter system, using an ensemble of emitters and a tapered optical
fiber. This method provides high-contrast spectra of the cavity modes,
selective detection of emitters coupled to the cavity, and an estimate of the
device performance in the single- emitter case. Using nitrogen-vacancy (NV)
centers in diamond and a GaP optical microcavity, we are able to tune the
cavity onto the NV resonance at 10 K, couple the cavity-coupled emission to a
tapered fiber, and measure the fiber-coupled NV spontaneous emission decay.
Theoretically we show that the fiber-coupled average Purcell factor is 2-3
times greater than that of free-space collection; although due to ensemble
averaging it is still a factor of 3 less than the Purcell factor of a single,
ideally placed center.Comment: 15 pages, 6 figure
Single photon quantum non-demolition in the presence of inhomogeneous broadening
Electromagnetically induced transparency (EIT) has been often proposed for
generating nonlinear optical effects at the single photon level; in particular,
as a means to effect a quantum non-demolition measurement of a single photon
field. Previous treatments have usually considered homogeneously broadened
samples, but realisations in any medium will have to contend with inhomogeneous
broadening. Here we reappraise an earlier scheme [Munro \textit{et al.} Phys.
Rev. A \textbf{71}, 033819 (2005)] with respect to inhomogeneities and show an
alternative mode of operation that is preferred in an inhomogeneous
environment. We further show the implications of these results on a potential
implementation in diamond containing nitrogen-vacancy colour centres. Our
modelling shows that single mode waveguide structures of length in single-crystal diamond containing a dilute ensemble of NV
of only 200 centres are sufficient for quantum non-demolition measurements
using EIT-based weak nonlinear interactions.Comment: 21 pages, 9 figures (some in colour) at low resolution for arXiv
purpose
Properties of nitrogen-vacancy centers in diamond: group theoretic approach
We present a procedure that makes use of group theory to analyze and predict
the main properties of the negatively charged nitrogen-vacancy (NV) center in
diamond. We focus on the relatively low temperatures limit where both the
spin-spin and spin-orbit effects are important to consider. We demonstrate that
group theory may be used to clarify several aspects of the NV structure, such
as ordering of the singlets in the () electronic configuration, the
spin-spin and the spin-orbit interactions in the () electronic
configuration. We also discuss how the optical selection rules and the response
of the center to electric field can be used for spin-photon entanglement
schemes. Our general formalism is applicable to a broad class of local defects
in solids. The present results have important implications for applications in
quantum information science and nanomagnetometry.Comment: 30 pages, 6 figure
Driving current through single organic molecules
We investigate electronic transport through two types of conjugated
molecules. Mechanically controlled break-junctions are used to couple thiol
endgroups of single molecules to two gold electrodes. Current-voltage
characteristics (IVs) of the metal-molecule-metal system are observed. These
IVs reproduce the spatial symmetry of the molecules with respect to the
direction of current flow. We hereby unambigously detect an intrinsic property
of the molecule, and are able to distinguish the influence of both the molecule
and the contact to the metal electrodes on the transport properties of the
compound system.Comment: 4 pages, 5 figure
Stark shift control of single optical centers in diamond
Lifetime limited optical excitation lines of single nitrogen vacancy (NV) defect centers in diamond have been observed at liquid helium temperature. They display unprecedented spectral stability over many seconds and excitation cycles. Spectral tuning of the spin selective optical resonances was performed via the application of an external electric field (i.e. the Stark shift). A rich variety of Stark shifts were observed including linear as well as quadratic components. The ability to tune the excitation lines of single NV centers has potential applications in quantum information processing
- …