6,386 research outputs found

    Quasilinear spin voltage profiles in spin thermoelectrics

    Full text link
    Recent experiments show that spin thermoelectrics is a promising approach to generate spin voltages. While spin chemical potentials are often limited to a surface layer of the order of the spin diffusion length, we show that thermoelectrically induced spin chemical potentials can extend much further in itinerant ferromagnets with paramagnetic impurities. In some cases, conservation laws, e.g., for a combination of spin and heat currents, give rise to a linear spin voltage profile. More generally, we find quasilinear profiles involving a spin thermoelectric length scale which far exceeds the spin diffusion length.Comment: 4+ page

    Research of Motivational Aspects for Marketing Support of Innovative Activity of Industrial Enterprises

    Get PDF
    The article is devoted to the theoretical grounding and development of practical recommendations for research and formation of motivational aspects for marketing support of innovative activity of industrial enterprises. Methodology of the research of marketing employees at industrial enterprises is revealed to clarify the motives of their behavior and the impact on existing businesses activity. Use of internal marketing is proposed to enhance the motivation of marketing employees for improving innovative activity of the enterprises. Application of motivational approach of the internal marketing is proved. This application is based on overcoming objections concerning innovation, study of internal incentives and opportunities for self-development and aims to result in a change and/or innovation, which is achieved through the formation of a balanced scorecard of marketing department, which is provides creation of preconditions to stimulate, support and development of innovation. Scientific and practical approaches are developed for the use of a balanced scorecard to determine sub-processes of marketing activities, as well as in assessing loyalty of the marketing employees

    Dense Gas in the Milky Way

    Get PDF
    We present a study of dense gas emission in the Milky Way in order to serve as a basis for comparison with extragalactic results. This study combines new observations of HCN, CS, and CO in individual GMCs and in the Milky Way plane with published studies of emission from these molecules in the inner 500 pc of the Milky Way. We find a strong trend in the fraction of emission from dense gas tracers as a function of location in the Milky Way: in the bulge, I_{HCN}/I_{CO} = 0.081 \pm 0.004, in the plane, I_{HCN}/I_{CO} = 0.026 \pm 0.008 on average, and over the full extent of nearby GMCs, I_{HCN}/I_{CO} = 0.014 \pm 0.020. Similar trends are seen in I_{CS}/I_{CO}. The low intensities of the HCN and CS emission in the plane suggests that these lines are produced by gas at moderate densities; they are thus not like the emission produced by the dense, pc-scale star forming cores in nearby GMCs. The contrast between the bulge and disk ratios in the Milky Way is likely to be caused by a combination of higher kinetic temperatures as well as a higher dense gas fraction in the bulge of the Milky Way.Comment: 34 pages LaTeX, AASTEX macros, includes 11 postscript figures. To appear in ApJ 478, March 199

    Anomalous Hall effect in a two dimensional electron gas with magnetic impurities

    Full text link
    Magnetic impurities play an important role in many spintronics-related materials. Motivated by this fact, we study the anomalous Hall effect in the presence of magnetic impurities, focusing on two-dimensional electron systems with Rashba spin-orbit coupling. We find a highly nonlinear dependence on the impurity polarization, including possible sign changes. At small impurity magnetizations, this is a consequence of the remarkable result that the linear term is independent of the spin-orbit coupling strength. Near saturation of the impurity spins, the anomalous Hall conductivity can be resonantly enhanced, due to interference between potential and magnetic scattering.Comment: 5 pages, 3 figure

    Microwave conductivity of d-wave superconductors with extended impurities

    Full text link
    We investigate the influence of extended scatterers on the finite temperature and finite frequency microwave conductivity of d-wave superconductors. For this purpose we generalize a previous treatment by Durst and Lee, which is based on a nodal approximation of the quasiparticle excitations and scattering processes, and apply it to the analysis of experimental spectra of YBCO-123 and BSCCO-2212. For YBCO, we find that accounting for a slight spatial extension of the strong scattering in-plane defects improves the fit of the low temperature microwave conductivity to experiment. With respect to BSCCO we conclude that it is necessary to include a large concentration of weak-to-intermediate strength extended scatterers, which we attribute to the out-of plane disorder introduced by doping. These findings for BSCCO are consistent with similar analyses of the normal state ARPES spectra and of STM spectra in the superconducting state, where an enhanced forward scattering has been inferred as well.Comment: 10 pages, 11 figure

    Cognitive control and discourse comprehension in schizophrenia.

    Get PDF
    Cognitive deficits across a wide range of domains have been consistently observed in schizophrenia and are linked to poor functional outcome (Green, 1996; Carter, 2006). Language abnormalities are among the most salient and include disorganized speech as well as deficits in comprehension. In this review, we aim to evaluate impairments of language processing in schizophrenia in relation to a domain-general control deficit. We first provide an overview of language comprehension in the healthy human brain, stressing the role of cognitive control processes, especially during discourse comprehension. We then discuss cognitive control deficits in schizophrenia, before turning to evidence suggesting that schizophrenia patients are particularly impaired at processing meaningful discourse as a result of deficits in control functions. We conclude that domain-general control mechanisms are impaired in schizophrenia and that during language comprehension this is most likely to result in difficulties during the processing of discourse-level context, which involves integrating and maintaining multiple levels of meaning. Finally, we predict that language comprehension in schizophrenia patients will be most impaired during discourse processing. We further suggest that discourse comprehension problems in schizophrenia might be mitigated when conflicting information is absent and strong relations amongst individual words are present in the discourse context."There is no "centre of Speech" in the brain any more than there is a faculty of Speech in the mind.The entire brain, more or less, is at work in a man who uses language"William JamesFrom The Principles of Psychology, 1890"The mind in dementia praecox is like an orchestra without a conductor"Kraepelin, 1919

    Dopant-modulated pair interaction in cuprate superconductors

    Full text link
    Comparison of recent experimental STM data with single-impurity and many-impurity Bogoliubov-de Gennes calculations strongly suggests that random out-of-plane dopant atoms in cuprates modulate the pair interaction locally. This type of disorder is crucial to understanding the nanoscale electronic structure inhomogeneity observed in BSCCO-2212, and can reproduce observed correlations between the positions of impurity atoms and various aspects of the local density of states such as the gap magnitude and the height of the coherence peaks. Our results imply that each dopant atom modulates the pair interaction on a length scale of order one lattice constant.Comment: 5 pages, 4 figure

    Simulations of MHD Instabilities in Intracluster Medium Including Anisotropic Thermal Conduction

    Full text link
    We perform a suite of simulations of cooling cores in clusters of galaxies in order to investigate the effect of the recently discovered heat flux buoyancy instability (HBI) on the evolution of cores. Our models follow the 3-dimensional magnetohydrodynamics (MHD) of cooling cluster cores and capture the effects of anisotropic heat conduction along the lines of magnetic field, but do not account for the cosmological setting of clusters or the presence of AGN. Our model clusters can be divided into three groups according to their final thermodynamical state: catastrophically collapsing cores, isothermal cores, and an intermediate group whose final state is determined by the initial configuration of magnetic field. Modeled cores that are reminiscent of real cluster cores show evolution towards thermal collapse on a time scale which is prolonged by a factor of ~2-10 compared with the zero-conduction cases. The principal effect of the HBI is to re-orient field lines to be perpendicular to the temperature gradient. Once the field has been wrapped up onto spherical surfaces surrounding the core, the core is insulated from further conductive heating (with the effective thermal conduction suppressed to less than 1/100th of the Spitzer value) and proceeds to collapse. We speculate that, in real clusters, the central AGN and possibly mergers play the role of "stirrers," periodically disrupting the azimuthal field structure and allowing thermal conduction to sporadically heat the core.Comment: 16 pages, 3 tables, 17 figures, accepted to ApJ with minor revisions, to appear in Volume 704, Oct 20, 2009 issu
    corecore