218 research outputs found

    A preoperative simulation of medial open-wedge high tibial osteotomy for predicting postoperative realignment

    Get PDF
    Three-dimensional preoperative surgical simulation of the medial open-wedge high tibial osteotomy (OWHTO), simplified as the rigid rotation around the hinge axis, has been performed to predict postoperative realignment. However, the practicality of this highly simplified simulation method has not been verified. This study aimed to investigate the validity of realignment simulation simplified as a rotation around a hinge axis compared with a postoperative CT model. A three-dimensional surface model of the tibia and femur was created from preoperative computed tomography (CT) images (preoperative model) of three patients. The simulation of medial OWHTO created sixty computer simulation models in each patient simplified as the rigid rotation of the proximal part of the tibia relative to the distal part from 1° to 20° around three types of hinge axes. The simulation models were compared with the actual postoperative model created from postoperative CT images to assess the reality of the simulation model. The average surface distance between the two models was calculated as an index representing the similarity of the simulation model to the postoperative model. The minimum value of average surface distances between the simulation and postoperative CT models was almost 1 mm in each patient. The rotation angles at which the minimum value of average surface distances was represented were almost identical to the actual correction angles. We found that the posterior tibial tilt and the axial rotation of the proximal tibia of the simulation model well represented those of the postoperative CT model, as well as the valgus correction. Therefore, the realignment simulation of medial OWHTO can generate realistic candidates for postoperative realignment that includes the actual postoperative realignment, suggesting the efficacy of the preoperative simulation method.Konda S., Ishibashi T., Tamaki M., et al. A preoperative simulation of medial open-wedge high tibial osteotomy for predicting postoperative realignment. Frontiers in Bioengineering and Biotechnology 11, 1278912 (2023); https://doi.org/10.3389/fbioe.2023.1278912

    In Situ Transmission Electron Microscopy for Electronics

    Get PDF
    Electronic devices are strongly influenced by their microstructures. In situ transmission electron microscopy (in situ TEM) with capability to measure electrical properties is an effective method to dynamically correlate electric properties with microstructures. We have developed tools and in situ TEM experimental procedures for measuring electronic devices, including TEM sample holders and sample preparation methods. The method was used to study metallic nanowire by electromigration, magnetoresistance of a ferromagnetic device, conductance quantization of a metallic nanowire, single electron tunnelling, and operation details of resistive random access memories (ReRAM)

    Mitigating Cosmic Microwave Background Shadow Degradation of Tensor-to-scalar Ratio Measurements through Map-based Studies

    Full text link
    It has been pointed out that the spurious Cosmic Microwave Background (CMB) B-mode polarization signals caused by the absorption of the CMB monopole component due to the Galactic interstellar matter, called the CMB shadow, degrade the accuracy of detecting the CMB B-mode polarization signals imprinted by primordial gravitational waves. We have made a realistic estimation using simulated sky maps of how the CMB shadow affects forthcoming high-precision CMB B-mode experiments for the first time. The Delta-map method, an internal template method taking into account the first-order spatial variation of foregrounds' spectral parameters, is applied as a foreground removal method. We show that if the CMB shadow effects are not taken into account in the foreground removal process, future observations would lead to the false detection of the CMB B-mode polarization signals originating from primordial gravitational waves. We also show that the effect of the CMB shadow can be mitigated by our revised Delta-map method to target the CMB B-mode polarization signals at the level of tensor-to-scalar ratio r=0.001.Comment: 9 pages, 2 figure

    Renal impairment with sublethal tubular cell injury in a chronic liver disease mouse model

    Get PDF
    The pathogenesis of renal impairment in chronic liver diseases (CLDs) has been primarily studied in the advanced stages of hepatic injury. Meanwhile, the pathology of renal impairment in the early phase of CLDs is poorly understood, and animal models to elucidate its mechanisms are needed. Thus, we investigated whether an existing mouse model of CLD induced by 3, 5-diethoxycarbonyl-1, 4-dihydrocollidine (DDC) shows renal impairment in the early phase. Renal injury markers, renal histology (including immunohistochemistry for tubular injury markers and transmission electron microscopy), autophagy, and oxidative stress were studied longitudinally in DDC- and standard diet-fed BALB/c mice. Slight but significant renal dysfunction was evident in DDC-fed mice from the early phase. Meanwhile, histological examinations of the kidneys with routine light microscopy did not show definitive morphological findings, and electron microscopic analyses were required to detect limited injuries such as loss of brush border microvilli and mitochondrial deformities. Limited injuries have been recently designated as sublethal tubular cell injury. As humans with renal impairment, either with or without CLD, often show almost normal tubules, sublethal injury has been of particular interest. In this study, the injuries were associated with mitochondrial aberrations and oxidative stress, a possible mechanism for sublethal injury. Intriguingly, two defense mechanisms were associated with this injury that prevent it from progressing to apparent cell death: autophagy and single-cell extrusion with regeneration. Furthermore, the renal impairment of this model progressed to chronic kidney disease with interstitial fibrosis after long-term DDC feeding. These findings indicated that DDC induces renal impairment with sublethal tubular cell injury from the early phase, leading to chronic kidney disease. Importantly, this CLD mouse model could be useful for studying the pathophysiological mechanisms of sublethal tubular cell injury

    PET/CTを用いたマウス骨格筋インスリン抵抗性の評価

    Get PDF
    Measuring glucose uptake in the skeletal muscle in vivo is an effective method to determine glucose metabolism abnormalities as the skeletal muscle is the principal tissue responsible for glucose disposal and is a major site of peripheral insulin resistance. In this study, we investigated the pathological glucose metabolism dynamics of the skeletal muscle of C57BL/6J mice in a noninvasive and time-sequential manner using positron emission tomography/computed tomography (PET/CT), an imaging technique that uses radioactive substances to visualize and measure metabolic processes in the body, with [18F]-fluoro-2-deoxy-D-glucose (FDG). FDG-PET/CT imaging revealed that insulin administration and exercise load significantly increased FDG accumulation in the skeletal muscle of C57BL/6J mice. FDG accumulation was lower in the skeletal muscle of 14-week-old db/db diabetic model mice exhibiting remarkable insulin resistance compared to that of 7-week-old db/db mice. Based on the continuous observation of FDG accumulation over time in diet-induced obese (DIO) mice, FDG accumulation significantly decreased in 17-week-old mice after the acquisition of insulin resistance. Although insulin-induced glucose uptake in the skeletal muscle was markedly attenuated in 20-week-old DIO mice that had already developed insulin resistance, exercise load effectively increased FDG uptake in the skeletal muscle. Thus, we successfully confirmed that glucose uptake accompanied by insulin administration and exercise load increased in the skeletal muscle using PET-CT. FDG-PET/CT might be an effective tool that could noninvasively capture the chronological changes of metabolic abnormalities in the skeletal muscle of mice

    Mitochondrial fission in hepatocytes as a potential therapeutic target for nonalcoholic steatohepatitis

    Get PDF
    [Aim] The mitochondria are highly plastic and dynamic organelles; mitochondrial dysfunction has been reported to play causative roles in diabetes, cardiovascular diseases, and nonalcoholic fatty liver disease (NAFLD). However, the relationship between mitochondrial fission and NAFLD pathogenesis remains unknown. We aimed to investigate whether alterations in mitochondrial fission could play a role in the progression of NAFLD. [Methods] Mice were fed a standard diet or choline-deficient, L-amino acid-defined (CDAA) diet with vehicle or mitochondrial division inhibitor-1. [Results] Substantial enhancement of mitochondrial fission in hepatocytes was triggered by 4 weeks of feeding and was associated with changes reflecting the early stage of human nonalcoholic steatohepatitis (NASH), steatotic change with liver inflammation, and hepatocyte ballooning. Excessive mitochondrial fission inhibition in hepatocytes and lipid metabolism dysregulation in adipose tissue attenuated liver inflammation and fibrogenesis but not steatosis and the systemic pathological changes in the early and chronic fibrotic NASH stages (4- and 12-week CDAA feeding). These beneficial changes due to the suppression of mitochondrial fission against the liver and systemic injuries were associated with decreased autophagic responses and endoplasmic reticulum stress in hepatocytes. Injuries to other liver cells, such as endothelial cells, Kupffer cells, and hepatic stellate cells, were also attenuated by the inhibition of mitochondrial fission in hepatocytes. [Conclusions] Taken together, these findings suggest that excessive mitochondrial fission in hepatocytes could play a causative role in NAFLD progression by liver inflammation and fibrogenesis through altered cell cross-talk. This study provides a potential therapeutic target for NAFLD

    Feature extraction from images of endoscopic large intestine

    Get PDF
    The 14th Korea-Japan Joint Workshop on Frontiers of Computer Vision (FCV2008), Poster ; Place : Beppu, Oita, Japan ; Date : January 23-26, 200

    A consideration for condition analysis with pit pattern of endoscope image

    Get PDF
    MIRU 2007 第10回 画像の認識・理解シンポジウム ポスター資料 ; 開催場所 : 広島市立大学, 広島 ; 開催日時:2007年7月30日~8月1

    Watershed法を用いた大腸拡大内視鏡画像からのpit pattern抽出

    Get PDF
    特別企画「学生ポスターセッション

    NBIを用いた大腸拡大内視鏡画像からの血管領域の抽出

    Get PDF
    平成19年度電気・情報関連学会中国支部第58回連合大会発表資料。開催地:広島大学 ; 開催日:2007年10月20
    corecore