2,936 research outputs found
Quasiparticle dynamics and spin-orbital texture of the SrTiO3 two-dimensional electron gas
Two-dimensional electron gases (2DEGs) in SrTiO have become model systems
for engineering emergent behaviour in complex transition metal oxides.
Understanding the collective interactions that enable this, however, has thus
far proved elusive. Here we demonstrate that angle-resolved photoemission can
directly image the quasiparticle dynamics of the -electron subband ladder of
this complex-oxide 2DEG. Combined with realistic tight-binding supercell
calculations, we uncover how quantum confinement and inversion symmetry
breaking collectively tune the delicate interplay of charge, spin, orbital, and
lattice degrees of freedom in this system. We reveal how they lead to
pronounced orbital ordering, mediate an orbitally-enhanced Rashba splitting
with complex subband-dependent spin-orbital textures and markedly change the
character of electron-phonon coupling, co-operatively shaping the low-energy
electronic structure of the 2DEG. Our results allow for a unified understanding
of spectroscopic and transport measurements across different classes of
SrTiO-based 2DEGs, and yield new microscopic insights on their functional
properties.Comment: 10 pages including supplementary information, 4+4 figure
Control of a two-dimensional electron gas on SrTiO3(111) by atomic oxygen
We report on the formation of a two-dimensional electron gas (2DEG) at the
bare surface of (111) oriented SrTiO3. Angle resolved photoemission experiments
reveal highly itinerant carriers with a 6-fold symmetric Fermi surface and
strongly anisotropic effective masses. The electronic structure of the 2DEG is
in good agreement with self-consistent tight-binding supercell calculations
that incorporate a confinement potential due to surface band bending. We
further demonstrate that alternate exposure of the surface to ultraviolet light
and atomic oxygen allows tuning of the carrier density and the complete
suppression of the 2DEG.Comment: 5 pages, 4 figure
Creation and control of a two-dimensional electron liquid at the bare SrTiO3 surface
Many-body interactions in transition-metal oxides give rise to a wide range
of functional properties, such as high-temperature superconductivity, colossal
magnetoresistance, or multiferroicity. The seminal recent discovery of a
two-dimensional electron gas (2DEG) at the interface of the insulating oxides
LaAlO3 and SrTiO3 represents an important milestone towards exploiting such
properties in all-oxide devices. This conducting interface shows a number of
appealing properties, including a high electron mobility, superconductivity,
and large magnetoresistance and can be patterned on the few-nanometer length
scale. However, the microscopic origin of the interface 2DEG is poorly
understood. Here, we show that a similar 2DEG, with an electron density as
large as 8x10^13 cm^-2, can be formed at the bare SrTiO3 surface. Furthermore,
we find that the 2DEG density can be controlled through exposure of the surface
to intense ultraviolet (UV) light. Subsequent angle-resolved photoemission
spectroscopy (ARPES) measurements reveal an unusual coexistence of a light
quasiparticle mass and signatures of strong many-body interactions.Comment: 14 pages, 4 figures, supplementary information (see other files
Strong electron correlations in the normal state of FeSe0.42Te0.58
We investigate the normal state of the '11' iron-based superconductor
FeSe0.42Te0.58 by angle resolved photoemission. Our data reveal a highly
renormalized quasiparticle dispersion characteristic of a strongly correlated
metal. We find sheet dependent effective carrier masses between ~ 3 - 16 m_e
corresponding to a mass enhancement over band structure values of m*/m_band ~ 6
- 20. This is nearly an order of magnitude higher than the renormalization
reported previously for iron-arsenide superconductors of the '1111' and '122'
families but fully consistent with the bulk specific heat.Comment: 5 pages, 4 figures, to appear in Phys. Rev. Let
Collapse of the Mott gap and emergence of a nodal liquid in lightly doped SrIrO
Superconductivity in underdoped cuprates emerges from an unusual electronic
state characterised by nodal quasiparticles and an antinodal pseudogap. The
relation between this state and superconductivity is intensely studied but
remains controversial. The discrimination between competing theoretical models
is hindered by a lack of electronic structure data from related doped Mott
insulators. Here we report the doping evolution of the Heisenberg
antiferromagnet SrIrO, a close analogue to underdoped cuprates. We
demonstrate that metallicity emerges from a rapid collapse of the Mott gap with
doping, resulting in lens-like Fermi contours rather than disconnected Fermi
arcs as observed in cuprates. Intriguingly though, the emerging electron liquid
shows nodal quasiparticles with an antinodal pseudogap and thus bares strong
similarities with underdoped cuprates. We conclude that anisotropic pseudogaps
are a generic property of two-dimensional doped Mott insulators rather than a
unique hallmark of cuprate high-temperature superconductivity
Stomagen positively regulates stomatal density in Arabidopsis.
葉の気孔の数を増加させる因子の発見~CO2削減や食糧増産へ向けて~. 京都大学プレスリリース. 2009-12-10.Stomata in the epidermal tissues of leaves are valves through which passes CO(2), and as such they influence the global carbon cycle. The two-dimensional pattern and density of stomata in the leaf epidermis are genetically and environmentally regulated to optimize gas exchange. Two putative intercellular signalling factors, EPF1 and EPF2, function as negative regulators of stomatal development in Arabidopsis, possibly by interacting with the receptor-like protein TMM. One or more positive intercellular signalling factors are assumed to be involved in stomatal development, but their identities are unknown. Here we show that a novel secretory peptide, which we designate as stomagen, is a positive intercellular signalling factor that is conserved among vascular plants. Stomagen is a 45-amino--rich peptide that is generated from a 102-amino-acid precursor protein designated as STOMAGEN. Both an in planta analysis and a semi-in-vitro analysis with recombinant and chemically synthesized stomagen peptides showed that stomagen has stomata-inducing activity in a dose-dependent manner. A genetic analysis showed that TMM is epistatic to STOMAGEN (At4g12970), suggesting that stomatal development is finely regulated by competitive binding of positive and negative regulators to the same receptor. Notably, STOMAGEN is expressed in inner tissues (the mesophyll) of immature leaves but not in the epidermal tissues where stomata develop. This study provides evidence of a mesophyll-derived positive regulator of stomatal density. Our findings provide a conceptual advancement in understanding stomatal development: inner photosynthetic tissues optimize their function by regulating stomatal density in the epidermis for efficient uptake of CO(2)
Model for the hydration of non-polar compounds and polymers
We introduce an exactly solvable statistical-mechanical model of the
hydration of non-polar compounds, based on grouping water molecules in clusters
where hydrogen bonds and isotropic interactions occur; interactions between
clusters are neglected. Analytical results show that an effective strengthening
of hydrogen bonds in the presence of the solute, together with a geometric
reorganization of water molecules, are enough to yield hydrophobic behavior. We
extend our model to describe a non-polar homopolymer in aqueous solution,
obtaining a clear evidence of both ``cold'' and ``warm'' swelling transitions.
This suggests that our model could be relevant to describe some features of
protein folding.Comment: REVTeX, 6 pages, 3 figure
- …