8,662 research outputs found

    Shock associated noise reduction from inverted-velocity-profile coannular jets

    Get PDF
    Acoustic measurements show that the shock noise from the outer stream is virtually eliminated when the inner stream is operated at a Mach number just above unity, regardless of all the other jet operating conditions. At this optimum condition, the coannular jet provides the maximum noise reduction relative to the equivalent single jet. The shock noise reduction can be achieved at inverted-as well as normal-velocity-profile conditions, provided the coannular jet is operated with the inner stream just slightly supersonic. Analytical models for the shock structure and shock noise are developed indicate that a drastic change in the outer stream shock cell structure occurs when the inner stream increases its velocity from subsonic to supersonic. At this point, the almost periodic shock cell structure of the outer stream nearly completely disappears the noise radiated is minimum. Theoretically derive formulae for the peak frequencies and intensity scaling of shock associated noise are compared with the measured results, and good agreement is found for both subsonic and supersonic inner jet flows

    Analytical developments for definition and prediction of USB noise

    Get PDF
    A systematic acoustic data base and associated flow data are used in identifying the noise generating mechanisms of upper surface blown flap configurations of short takeoff and landing aircraft. Theory is developed for the radiated sound field of the highly sheared flow of the trailing edge wake. An empirical method is also developed using extensive experimental data and physical reasonings to predict the noise levels

    Tone-excited jet: Theory and experiments

    Get PDF
    A detailed study to understand the phenomenon of broadband jet-noise amplification produced by upstream discrete-tone sound excitation has been carried out. This has been achieved by simultaneous acquisition of the acoustic, mean velocity, turbulence intensities, and instability-wave pressure data. A 5.08 cm diameter jet has been tested for this purpose under static and also flight-simulation conditions. An open-jet wind tunnel has been used to simulate the flight effects. Limited data on heated jets have also been obtained. To improve the physical understanding of the flow modifications brought about by the upstream discrete-tone excitation, ensemble-averaged schlieren photographs of the jets have also been taken. Parallel to the experimental study, a mathematical model of the processes that lead to broadband-noise amplification by upstream tones has been developed. Excitation of large-scale turbulence by upstream tones is first calculated. A model to predict the changes in small-scale turbulence is then developed. By numerically integrating the resultant set of equations, the enhanced small-scale turbulence distribution in a jet under various excitation conditions is obtained. The resulting changes in small-scale turbulence have been attributed to broadband amplification of jet noise. Excellent agreement has been found between the theory and the experiments. It has also shown that the relative velocity effects are the same for the excited and the unexcited jets

    High-Energy emissions from the Pulsar/Be binary system PSR J2032+4127/MT91 213

    Get PDF
    PSR J2032+4127 is a radio-loud gamma-ray-emitting pulsar; it is orbiting around a high-mass Be type star with a very long orbital period of 25-50years, and is approaching periastron, which will occur in late 2017/early 2018. This system comprises with a young pulsar and a Be type star, which is similar to the so-called gamma-ray binary PSR~B1259-63/LS2883. It is expected therefore that PSR J2032+4127 shows an enhancement of high-energy emission caused by the interaction between the pulsar wind and Be wind/disk around periastron. Ho et al. recently reported a rapid increase in the X-ray flux from this system. In this paper, we also confirm a rapid increase in the X-ray flux along the orbit, while the GeV flux shows no significant change. We discuss the high-energy emissions from the shock caused by the pulsar wind and stellar wind interaction and examine the properties of the pulsar wind in this binary system. We argue that the rate of increase of the X-ray flux observed by Swift indicates (1) a variation of the momentum ratio of the two-wind interaction region along the orbit, or (2) an evolution of the magnetization parameter of the pulsar wind with the radial distance from the pulsar. We also discuss the pulsar wind/Be disk interaction at the periastron passage, and propose the possibility of formation of an accretion disk around the pulsar. We model high-energy emissions through the inverse-Compton scattering process of the cold-relativistic pulsar wind off soft photons from the accretion disk.Comment: 18 pages, 23 figures, 1 Table, accepted for publication in Ap

    Noise characteristics of upper surface blown configurations: Analytical Studies

    Get PDF
    Noise and flow results of upper surface blown configurations were analyzed. The dominant noise source mechanisms were identified from experimental data. From far-field noise data for various geometric and operational parameters, an empirical noise prediction program was developed and evaluated by comparing predicted results with experimental data from other tests. USB aircraft compatibility studies were conducted using the described noise prediction and a cruise performance data base. A final design aircraft was selected and theory was developed for the noise from the trailing edge wake assuming it as a highly sheared layer

    The X-ray modulation of PSR J2032+4127/MT91 213 during the Periastron Passage in 2017

    Get PDF
    We present the Neil Gehrels Swift Observatory (Swift), Fermi Large Area Telescope (Fermi-LAT), and Karl G. Jansky Very Large Array (VLA) observations of the gamma-ray binary PSR J2032+4127/MT91 213, of which the periastron passage has just occurred in November 2017. In the Swift X-ray light curve, the flux was steadily increasing before mid-October 2017, however, a sharp X-ray dip on a weekly time-scale is seen during the periastron passage, followed by a post-periastron X-ray flare lasting for ~20 days. We suggest that the X-ray dip is caused by (i) an increase of the magnetization parameter at the shock, and (ii) the suppression due to the Doppler boosting effect. The 20-day post-periastron flare could be a consequence of the Be stellar disk passage by the pulsar. An orbital GeV modulation is also expected in our model, however, no significant variability is seen in the Fermi-LAT light curve. We suspect that the GeV emission resulted from the interaction between the binary's members is hidden behind the bright magnetospheric emission of the pulsar. Pulsar gating technique would be useful to remove the magnetospheric emission and recover the predicted GeV modulation, if an accurate radio timing solution over the periastron passage is provided in the future.Comment: 6 pages, including 2 figures. Accepted for publication in Ap

    Calibration of multiple cameras for large-scale experiments using a freely moving calibration target

    Get PDF
    Abstract: Obtaining accurate experimental data from Lagrangian tracking and tomographic velocimetry requires an accurate camera calibration consistent over multiple views. Established calibration procedures are often challenging to implement when the length scale of the measurement volume exceeds that of a typical laboratory experiment. Here, we combine tools developed in computer vision and non-linear camera mappings used in experimental fluid mechanics, to successfully calibrate a four-camera setup that is imaging inside a large tank of dimensions ∼10×25×6m3. The calibration procedure uses a planar checkerboard that is arbitrarily positioned at unknown locations and orientations. The method can be applied to any number of cameras. The parameters of the calibration yields direct estimates of the positions and orientations of the four cameras as well as the focal lengths of the lenses. These parameters are used to assess the quality of the calibration. The calibration allows us to perform accurate and consistent linear ray-tracing, which we use to triangulate and track fish inside the large tank. An open-source implementation of the calibration in Matlab is available. Graphic abstract: [Figure not available: see fulltext.]

    Observing two dark accelerators around the Galactic Centre with Fermi Large Area Telescope

    Get PDF
    We report the results from a detailed γ\gamma-ray investigation in the field of two "dark accelerators", HESS J1745-303 and HESS J1741-302, with 6.96.9 years of data obtained by the Fermi Large Area Telescope. For HESS J1745-303, we found that its MeV-GeV emission is mainly originated from the "Region A" of the TeV feature. Its γ\gamma-ray spectrum can be modeled with a single power-law with a photon index of Γ2.5\Gamma\sim2.5 from few hundreds MeV to TeV. Moreover, an elongated feature, which extends from "Region A" toward northwest for 1.3\sim1.3^{\circ}, is discovered for the first time. The orientation of this feature is similar to that of a large scale atomic/molecular gas distribution. For HESS J1741-302, our analysis does not yield any MeV-GeV counterpart for this unidentified TeV source. On the other hand, we have detected a new point source, Fermi J1740.1-3013, serendipitously. Its spectrum is apparently curved which resembles that of a γ\gamma-ray pulsar. This makes it possibly associated with PSR B1737-20 or PSR J1739-3023.Comment: 11 pages, 7 figures, 2 tables, accepted for publication in MNRA

    Further investigation on chaos of real digital filters

    Get PDF
    This Letter displays, via the numerical simulation of a real digital filter, that a finite-state machine may behave in a near-chaotic way even when its corresponding infinite-state machine does not exhibit chaotic behavior

    ICASE/LaRC Workshop on Benchmark Problems in Computational Aeroacoustics (CAA)

    Get PDF
    The proceedings of the Benchmark Problems in Computational Aeroacoustics Workshop held at NASA Langley Research Center are the subject of this report. The purpose of the Workshop was to assess the utility of a number of numerical schemes in the context of the unusual requirements of aeroacoustical calculations. The schemes were assessed from the viewpoint of dispersion and dissipation -- issues important to long time integration and long distance propagation in aeroacoustics. Also investigated were the effect of implementation of different boundary conditions. The Workshop included a forum in which practical engineering problems related to computational aeroacoustics were discussed. This discussion took the form of a dialogue between an industrial panel and the workshop participants and was an effort to suggest the direction of evolution of this field in the context of current engineering needs
    corecore