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Abstract

We present the Neil Gehrels Swift Observatory (Swift), Fermi Large Area Telescope (Fermi-LAT), and Karl G.
Jansky Very Large Array (VLA) observations of the γ-ray binary PSR J2032+4127/MT91 213, of which the
periastron passage recently occurred in 2017 November. In the Swift X-ray light curve, the flux was steadily
increasing before 2017 mid-October, however, a sharp X-ray dip on a weekly timescale is seen during the
periastron passage, followed by a post-periastron X-ray flare lasting for ∼20 days. We suggest that the X-ray dip is
caused by (i) an increase of the magnetization parameter at the shock, and (ii) the suppression due to the Doppler
boosting effect. The 20-day post-periastron flare could be a consequence of the Be stellar disk passage by the
pulsar. An orbital GeV modulation is also expected in our model; however, no significant variability is seen in the
Fermi-LAT light curve. We suspect that the GeV emission from the interaction between the binary’s members is
hidden behind the bright magnetospheric emission of the pulsar. The pulsar gating technique would be useful to
remove the magnetospheric emission and recover the predicted GeV modulation, if an accurate radio timing
solution over the periastron passage is provided in the future.

Key words: pulsars: individual (PSR J2032+4127) – stars: individual (MT91 213) – stars: winds, outflows –
X-rays: binaries

1. Introduction

PSRJ2032+4127 is a young pulsar that has shown pulsations
at a spin period of Ps=143.2 ms in both γ-rays (Abdo
et al. 2009) and radio (Camilo et al. 2009; Ray et al. 2011). A
subsequent timing study by Lyne et al. (2015) indicated that
PSRJ2032+4127 is orbiting in a highly eccentric orbit with the
Be star MT91 213 in the Cyg OB2 stellar association (Massey &
Thompson 1991). Based on the latest timing solution published
by the team, the binary has a very long orbital period of 45–50
years with an eccentricity of e=0.94–0.99, and the pulsar would
have reached periastron in 2017 November (Ho et al. 2017).

The binary PSRJ2032+4127/MT91213 (hereafter J2032)
has been suggested to be a γ-ray binary: a subclass of high-
mass X-ray binaries (HMXBs) with members that show high-
energy (HE; 0.1–100 GeV) and/or very-high-energy (VHE;
>100 GeV) orbital modulations in their highly eccentric orbits
(see, e.g., Dubus 2013). While the pulsed emission of J2032
could be too bright to dominate over the possible HE
modulation in GeV (Takata et al. 2017), VERITAS and
MAGIC found that the TeV emission of J2032 increased by a
factor of ∼10 from 2017 June/August to November (Mirzoyan
& Mukherjee 2017; VERITAS & MAGIC Collaborations
2017). In addition to VHE, the X-ray emission of J2032 has
been rapidly increasing in 2016–17 (Ho et al. 2017; Li
et al. 2017), and this pre-periastron X-ray enhancement is
commonly seen in other γ-ray binaries, e.g., PSRB1259−63/
LS2883 (Chernyakova et al. 2015; Tam et al. 2015). Takata
et al. (2017) proposed an intra-binary shock model, which
involves an evolving pulsar wind magnetization and the
Doppler Boosting effect, to explain the pre-periastron X-ray
rise. Alternatively, Petropoulou et al. (2018) adopted an

axisymmetric (no azimuthal dependence) stellar wind structure
to explain the observed X-ray light curve. Aside from the
global increasing trend, Li et al. (2017) found strong spectral
variability on a monthly timescale in X-rays, but the
mechanism behind it still remains unclear.
In this paper, we report the new Swift observations taken

during the periastron passage. Fermi-LAT observations are also
presented, however, no significant γ-ray variability can be
detected. We also discussed how such an X-ray modulation can
be formed with the pulsar wind/stellar wind interaction model
(Takata et al. 2017). Throughout the analysis, we assumed the
periastron date to be 2017 November 12 (MJD 58069) as
suggested by the Model 2 in Ho et al. (2017), although 2017
November 13 as the the periastron date was derived in some
recent Astronomer’s Telegrams (e.g., Coe et al. 2017).

2. Swift Observations

Swift has been intensively monitoring J2032 since early
2016, with a weekly cadence before mid-2017 to a daily
cadence around periastron in 2017 November. As of 2018
January 31, 177 usable observations can be found in the Swift
public data archive (six of them were taken before 2016). Most
of them have exposure times between 1 and 4ks, and a few
have 5 ks or more.

2.1. XRT Data Reduction

The Swift/X-Ray Telescope (XRT) online tools7 (HEAsoft
v6.22 based) are used to build the light curve and the spectra
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used in this study (Evans et al. 2007, 2009). Except for
switching (i) the binning method to Observation, (ii) the
centroid method to Iterative, and (iii) the minimum
significance for a detection to two, all default parameters were
adopted. In addition, we manually subtracted the expected
contribution from the three XRT-unresolved sources (i.e.,
1.7×10−3 cts s−1) in the light curve to avoid an over-
estimation of the X-ray emission (see the detailed calculation in
Li et al. 2017). To compute the count rate to flux conversion
factor, we extracted spectra using the observations from 2017
April 06 to 2017 November 12 (arbitrarily chosen) and fitted
them with an absorbed power law simultaneously (all of the
parameters are tiled except the normalizations). The best-fit
parameters are NH=1.1×1022 cm−2 and Γ=1.6, which
yield a conversion factor of 1.142×10−10 erg cm−2 cts−1 (for
unabsorbed flux in 0.3–10 keV). We also tried some other
combinations of spectra and the conversion factor does not
change significantly. Finally, although the XRT data qualities
do not allow a good time-resolved spectral analysis over the
periastron passage, we calculated the hardness ratio for each
epoch to study the evolution of the X-ray color (i.e., H/S,
where S is the soft X-ray count rate in 0.3–1.5 keV and H is the
hard X-ray count rate in 1.5–10 keV; Figure 2).

2.2. UVOT Data Reduction

HEAsoft (v6.22) with the UVOT CALDB (v201709221)
was used to reduce the UVOT observations. All six UVOT
filters have been used (one filter per observation in most of the
cases), however, the v- and b-band light curves are under-
sampled and are therefore not discussed in this paper.

The Swift-specific FTOOLS, uvotmaghist, was used to
extract the UV light curves using aperture photometry. The
source aperture was chosen to be a 3″ radius circular region,
which is the optimal size for the UVOT data.8 Two bright
sources are fairly close to J2032. To accurately account for the
contamination from them, we used a 3″ circular region as the
background region, at a position so that the distances from
the two nearby sources are the same as the distances between
the nearby sources and J2032. Although the u-band images are
slightly overexposed as MT91213 is very bright with
mv=11.95 mag (Reed 2003), the flags saturated=0 from
uvotmaghist suggest that the measurements are still usable.

3. Fermi-LAT Observations

To obtain the γ-ray long-term light curve of J2032, we
downloaded the Fermi “Pass 8 Source” LAT data (instrumental
response function: “P8R2_SOURCE_V6”) from the Fermi
Science Support Center (FSSC)9 with the criteria of (i) energy
from 100MeV to 500 GeV, and (ii) time from 2008 August 04
to 2018 January 22. A region of interest (ROI) was chosen to
be 20°×20° square centered at the epoch J2000 position of
the source: (R.A., decl.)=(20h32m14 35,+41°26′48 8; i.e.,
the LAT position of J2032 in the Fermi LAT 4-Year Point
Source Catalog (3FGL); Acero et al. 2015). In addition, all of
data observed at zenith angles greater than 90° were excluded
to avoid contamination from the Earth’s albedo. All of the data
reduction and analysis processes were performed using the
Fermi Science Tools package version v10r0p5.

We first used the gtlike tool to model the average
emission from the background sources between 2008 August
04 to 2017 October 19 with a maximum likelihood optim-
ization technique (i.e., the binned likelihood analysis). The
source model includes (i) all of the 3FGL cataloged sources
within 25° from the center of the ROI (gll_psc_v16.fit; Acero
et al. 2015); (ii) the galactic diffuse emission (gll_iem_v06),
and the isotropic diffuse emission (iso_P8R2_SOUR-
CE_V6_v06); and (iii) the nearby microquasar Cygnus X-3
(Bodaghee et al. 2013) located <0°.5 away from J2032
(a simple power-law spectral model was assumed). For those
3FGL sources that are non-variable and located >6° away from
the ROI center, all of the spectral parameters were fixed to their
listed values in the 3FGL. There are also four extended sources
in the source model: Gamma Cygni, Cygnus Cocoon, HB 21,
and Cygnus Loop, which were modeled by the extended source
templates obtained from the FSSC. Our target J2032, known as
3FGLJ2032.2+4126 in the 3FGL catalog, was described by a
power law with simple exponential cutoff in the source model,
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where N0 is the normalization constant, E0 is the scale factor of
energy in MeV, Γ is the spectral power-law index, and EC is the
cutoff energy in MeV. From the binned likelihood analysis, the
best-fit parameters of J2032 during 2008 August 04 to 2017
October 19 are N0=(1.66±0.05)×10

−11, Γ=−1.39±0.04,
and EC=(4500±249) MeV.
Next, we construct a new model from the above version by

fixing all of the spectral parameters to their global best-fit
values, except the normalizations. The new model was then
used to compute a long-term two-week binned light curve of
J2032 with the binned likelihood method, which is shown in
Figure 1. In addition, the light curve of CygX-3 is shown for
comparison. As shown in the bottom panel of the figure,
CygX-3 was mostly undetected at ∼3σ significance level
around the periastron passage, indicating that the observed
variability of J2032, however weak, is unlikely to be related to
the transient nature of CygX-3. It is also important to note that
the light curve shows the total energy fluxes observed at the
position of J2032, which is the sum of the pulsar’s magneto-
spheric emission (which is the dominant component) and the
possible contribution from the interaction between the binary’s
members.

4. Very Large Array (VLA) Observation

We observed J2032 with the VLA at 3 GHz (2–4 GHz;
S-band) in the C configuration on 2017 August 14, from
05:10:40 to 05:43:20 UTC (the observing date was marked in
Figure 2), under a Director Discretionary Time (DDT).
Standard data reduction procedures were performed using
the CASA software package (v4.7.2). J2032 was clearly
detected with an average flux of S3=0.10 mJybeam−1

(background rms noise: 0.014 mJy beam−1). The obtained
flux is well consistent with the previous measurement taken in
2009 (i.e., S2=0.12 mJy at 2 GHz; Camilo et al. 2009),
implying that the system did not evolve much at least in
August (three months before the periastron passage). It is
worth noting that the VLA observation was taken near the first
peak of the X-ray light curve (Figure 2). While the X-rays

8 https://swift.gsfc.nasa.gov/analysis/threads/uvot_thread_aperture.html
9 http://fermi.gsfc.nasa.gov/ssc/
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increased by a factor of 4 from 2016 to 2017, the radio
remains roughly the same.

5. Discussions

5.1. X-Ray Modulation

The observed X-ray flux of J2032 showed a rapid increase in
2013–2016, and then it abruptly began to decrease in 2017
October just before the periastron passage in early November.
In addition, the X-ray hardness ratio likely increased (i.e.,
harder) when the pulsar was passing periastron, possibly
because of the higher NH, hence the heavier soft X-ray
absorption, near the Be star. Despite the small-scale fluctuation
and/or flare-like behaviors observed soon after the periastron
passage that could be related to the interactions between the
pulsar and the clumpy stellar wind and/or the Be stellar disk,
the global trend of the observed X-ray light curve can be
explained by the evolution of the magnetization of the pulsar
wind and the Doppler boosting effect of the shocked pulsar
wind. The magnetization of the pulsar wind is defined by the

ratio of the magnetic energy to the kinetic energy
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where B, ΓPW, and NPW are the magnetic field, Lonrentz factor,
and number density of the cold-relativistic pulsar wind,
respectively, at the region between the pulsar and the shock.
It has been a long-standing problem of how the magnetization
evolves with distance from σ?1 at the light cylinder to
σ<1 at the interstellar shock of the pulsar wind nebula (see,
e.g., Kennel & Coroniti 1984; Coroniti 1990; Lyubarsky &
Kirk 2001). Kirk & Mochol (2011) and Kirk & Giacinti (2017)
suggested that the evolution can be described by σ∝r−1 (here
r means the radial distance from the pulsar) for the regions far
away from the light cylinder in the absence of the magnetic
dissipation. The evolution can be steeper if there is a magnetic
dissipation in the pulsar wind.
We have modeled the X-ray modulation of J2032 over the

periastron passage by assuming a radial dependency of the
magnetization as σ∝r−α, where α is in the range of 1–3

Figure 1. Top panel: Fermi γ-ray light curve of J2032 during 2008 August 04 to 2018 January 22 in the energy range 100 MeV–500 GeV. Middle panel: zoom-in
version of the light curve showing the energy flux of J2032 (circle) and the nearby CygX-3 (square) from 2017 May 27 to 2018 January 22. In both light curves, the
blue arrow shows the time of the periastron passage, while the red dashed line represents the average flux level of the source from the global binned likelihood analysis
during 2008 August 04 to 2017 October 19 with the corresponding uncertainty indicated by the gray shaded band. Bottom panel: test-statistic (TS) values of J2032 and
CygX-3. The red solid line indicates the TS threshold of 8, under which an 95% upper limit (triangle) is determined in the above light curves.
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(Takata et al. 2017). In the model, the X-rays are dominated by
the synchrotron emission from the post-shocked pulsar wind
with the shock geometry calculated based on η∼0.02, which is
the momentum ratio of the spin-down power of the pulsar
(Lsd∼1.7×1035 erg s−1) to the stellar wind. The Doppler
boosting effect due to the finite velocity of the shocked pulsar
wind were also considered, assuming a constant bulk velocity of
the post-shock pulsar along the shock-cone that was calculated
based on the jump condition of a perpendicular magnetohydro-
dynamics (MHD) shock (Kennel & Coroniti 1984).

By comparing the model to the XRT light curve before 2017,
the rapid X-ray flux increase in 2013–2016 implies a radial
evolution with an index of α=2–3 (Takata et al. 2017). In
addition, a rapid decrease in X-rays around the periastron was
predicted, based on (i) an increase of the magnetization parameter
at the shock (i.e., σ>1), and (ii) the suppression due to the
Doppler boosting effect. The Doppler boosting effect would also
make the observed X-ray modulation asymmetric about the
periastron date as the viewing angle changes. These features have
all been seen in the observed Swift/XRT light curve shown in
Figure 2, although the post-periastron X-ray emission predicted in
Takata et al. (2017) was slightly underestimated (see Figure 16
with α=2 in the reference). This likely implies an overestimation
of the speed of the post-shocked pulsar wind flow, and hence the
X-ray flux suppression due to the Doppler boosting effect. We
therefore reduced the assumed speed of the post-shock flow down
to 40%, and the resultant model light curve matches the general
trend of the XRT light curve reasonably well (Figure 2).

Understanding the flare-like X-ray structure observed around
MJD 58080–58100 in the pulsar wind/stellar wind interaction
model is not straightforward. Alternatively, this X-ray
enhancement could be caused by the pulsar and Be stellar
disk interaction, which abruptly changes the shock structure.
The radius of the shock (from the pulsar) induced by the
interaction can be determined by

r
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where ρd is the disk-mass density at the pulsar’s position and vr
is the relative velocity between the pulsar and the disk rotation.
If the scale height of the Be stellar disk at the pulsar’s position
is larger than the shock radius, the disk can confine most of the
pulsar wind, which could lead to an X-ray flux enhancement as
suggested in Takata et al. (2012). In Takata et al. (2017), we
discussed that if the base density of the Be stellar disk is larger
than ρ0>10−10 g cm−3 and the pulsar/Be stellar disk
interaction occurs at the periastron passage, the Be stellar disk
can make a cavity of the pulsar wind around the pulsar, and
enhance the X-ray emission. The flare-like X-ray enhancement
lasted for about 20days, which is a much longer period
compared to the timescale needed for the pulsar to cross the Be
stellar disk (i.e., tc∼H/vp∼2 days, where H∼0.1 au is the
scale height of the Be stellar disk at the pulsar orbit and
vp∼107 cm s−1 is the pulsar’s orbital velocity). However,

Figure 2. Left panel: the 0.3–10.0 keV and the Ultraviolet and Optical Telescope (UVOT) light curves of J2032 (from 2016 to 2018 January; 95% upper limits for
non-detection epochs) with the hardness ratio evolution (H/S, where S=0.3–1.5 keV and H=1.5–10 keV) in the lower panel. Right panel: the zoom-in version for
the periastron passage. Vega magnitude system is used for the UVOT light curve. For the hardness ratio plots, only those data points with uncertainties less than 2 are
shown. The periastron date and the VLA observing date (2017 August 14 or MJD 57979) were indicated by a gray vertical line and a blue arrow, respectively. Finally,
the red solid line shows the model light curve with α=2 for the radial distribution of the magnetization, and 40% of the speed of the post-shocked flow assumed in
Takata et al. (2017). A more detailed description for the model can be found in Takata et al. (2017).
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some disk matter could pile up in front of the pulsar when it is
passing through the disk. This phenomenon has been shown
possible in the 3D smoothed particle hydrodynamic simulation
by Takata et al. (2012). This piled-up disk matter will influence
the shock structure, and hence the X-ray emission, until it is
dispersed by the pressure of the nearby gas. The timescale of
the dispersion can be estimated as td∼H/cs∼20 days, where
cs∼10kms−1 is the sound speed of the Be stellar disk
(Okazaki et al. 2011), and it is well consistent with the
timescale of the X-ray flare.

5.2. Possible Orbital Modulation in UV

In the UVOT light curve, there is a clear UV brightening on
a timescale of about 100 days right at the periastron passage.
Unfortunately, the UV brightening is strongly contaminated by
MT91 213 (see the strong intrinsic variability of the Be star
before MJD 57900 in Figure 2), and therefore not much
information can be extracted. In fact, it is entirely possible that
the UV brightening is totally unrelated to the periastron
passage, but merely a time coincidence to the intrinsic
brightness change of the Be star.

In Takata et al. (2017), we discussed the possibility that if
the density of the Be stellar disk is sufficiently high, some
matter of the disk could be captured by the pulsar during the
periastron passage and a short-lived (e.g., weeks) UV-emitting
accretion disk can be formed around the pulsar. However, the
accretion disk would be very faint compared to the Be star/disk
(a factor of ?10 lower), and therefore the UV band (below
0.01 keV) will still be completely dominated by the emission
from the Be star/disk (see Figure 22 in Takata et al. 2012).
Obviously, the faint UV emission from the aforementioned
accretion disk is not comparable to the UV brightening, which
has a relatively high amplitude of ∼0.2mag (about 20% of the
Be star/disk). We therefore conclude that the enhanced UV
emission is unlikely from the accretion disk.

5.3. Gamma-ray Light Curve

We did not see any significant GeV modulation in the Fermi-
LAT light curve, which is not totally unexpected given the
strong contamination from the bright pulsed γ-ray emission of
PSRJ2032+4127, as we have mentioned. Performing pulsar
gating could remove the unwanted pulsar’s contribution, and
hence recover the GeV modulation due to the pulsar/stellar
winds interactions, if an accurate ephemeris of the pulsar
during the periastron passage is provided by radio timing
observations.

Yet, there was a very marginal γ-ray flux drop (about 50% of
the mean flux) observed right after the periastron passage (the
middle panel of Figure 1). While the drop is totally consistent
with the statistical fluctuations seen in other epochs of the light
curve, indicating that the drop is insignificant, we note that a
possible accretion flow discussed in Section 5.2 can indeed
shut down the γ-ray emission from the pulsar’s magnetosphere
(see, e.g., Takata et al. 2017), resulting in a similar light curve
feature. In this scenario, the radio pulsation should have been
shut down. Radio observations taken in the post-periastron
epoch would be very useful to test the idea.
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