8,331 research outputs found

    Connection Conditions and the Spectral Family under Singular Potentials

    Get PDF
    To describe a quantum system whose potential is divergent at one point, one must provide proper connection conditions for the wave functions at the singularity. Generalizing the scheme used for point interactions in one dimension, we present a set of connection conditions which are well-defined even if the wave functions and/or their derivatives are divergent at the singularity. Our generalized scheme covers the entire U(2) family of quantizations (self-adjoint Hamiltonians) admitted for the singular system. We use this scheme to examine the spectra of the Coulomb potential V(x)=−e2/∣x∣V(x) = - e^2 / | x | and the harmonic oscillator with square inverse potential V(x)=(mω2/2)x2+g/x2V(x) = (m \omega^2 / 2) x^2 + g/x^2, and thereby provide a general perspective for these models which have previously been treated with restrictive connection conditions resulting in conflicting spectra. We further show that, for any parity invariant singular potentials V(−x)=V(x)V(-x) = V(x), the spectrum is determined solely by the eigenvalues of the characteristic matrix U∈U(2)U \in U(2).Comment: TeX, 18 page

    Advancing osteochondral tissue engineering: bone morphogenetic protein, transforming growth factor, and fibroblast growth factor signaling drive ordered differentiation of periosteal cells resulting in stable cartilage and bone formation in vivo.

    Get PDF
    Chondrogenic mesenchymal stem cells (MSCs) have not yet been used to address the clinical demands of large osteochondral joint surface defects. In this study, self-assembling tissue intermediates (TIs) derived from human periosteum-derived stem/progenitor cells (hPDCs) were generated and validated for stable cartilage formation in vivo using two different animal models.status: publishe

    Further investigation on chaos of real digital filters

    Get PDF
    This Letter displays, via the numerical simulation of a real digital filter, that a finite-state machine may behave in a near-chaotic way even when its corresponding infinite-state machine does not exhibit chaotic behavior

    Propulsion in a viscoelastic fluid

    Full text link
    Flagella beating in complex fluids are significantly influenced by viscoelastic stresses. Relevant examples include the ciliary transport of respiratory airway mucus and the motion of spermatozoa in the mucus-filled female reproductive tract. We consider the simplest model of such propulsion and transport in a complex fluid, a waving sheet of small amplitude free to move in a polymeric fluid with a single relaxation time. We show that, compared to self-propulsion in a Newtonian fluid occurring at a velocity U_N, the sheet swims (or transports fluid) with velocity U / U_N = [1+De^2 (eta_s)/(eta) ]/[1+De^2], where eta_s is the viscosity of the Newtonian solvent, eta is the zero-shear-rate viscosity of the polymeric fluid, and De is the Deborah number for the wave motion, product of the wave frequency by the fluid relaxation time. Similar expressions are derived for the rate of work of the sheet and the mechanical efficiency of the motion. These results are shown to be independent of the particular nonlinear constitutive equations chosen for the fluid, and are valid for both waves of tangential and normal motion. The generalization to more than one relaxation time is also provided. In stark contrast with the Newtonian case, these calculations suggest that transport and locomotion in a non-Newtonian fluid can be conveniently tuned without having to modify the waving gait of the sheet but instead by passively modulating the material properties of the liquid.Comment: 21 pages, 1 figur

    Characterization of the material response in the granular ratcheting

    Get PDF
    The existence of a very special ratcheting regime has recently been reported in a granular packing subjected to cyclic loading \cite{alonso04}. In this state, the system accumulates a small permanent deformation after each cycle. After a short transient regime, the value of this permanent strain accumulation becomes independent on the number of cycles. We show that a characterization of the material response in this peculiar state is possible in terms of three simple macroscopic variables. They are defined that, they can be easily measured both in the experiments and in the simulations. We have carried out a thorough investigation of the micro- and macro-mechanical factors affecting these variables, by means of Molecular Dynamics simulations of a polydisperse disk packing, as a simple model system for granular material. Biaxial test boundary conditions with a periodically cycling load were implemented. The effect on the plastic response of the confining pressure, the deviatoric stress and the number of cycles has been investigated. The stiffness of the contacts and friction has been shown to play an important role in the overall response of the system. Specially elucidating is the influence of the particular hysteretical behavior in the stress-strain space on the accumulation of permanent strain and the energy dissipation.Comment: 13 pages, 20 figures. Submitted to PR

    Logarithmic perturbation theory for quasinormal modes

    Get PDF
    Logarithmic perturbation theory (LPT) is developed and applied to quasinormal modes (QNMs) in open systems. QNMs often do not form a complete set, so LPT is especially convenient because summation over a complete set of unperturbed states is not required. Attention is paid to potentials with exponential tails, and the example of a Poschl-Teller potential is briefly discussed. A numerical method is developed that handles the exponentially large wavefunctions which appear in dealing with QNMs.Comment: 24 pages, 4 Postscript figures, uses ioplppt.sty and epsfig.st

    Criticality and Superfluidity in liquid He-4 under Nonequilibrium Conditions

    Full text link
    We review a striking array of recent experiments, and their theoretical interpretations, on the superfluid transition in 4^4He in the presence of a heat flux, QQ. We define and evaluate a new set of critical point exponents. The statics and dynamics of the superfluid-normal interface are discussed, with special attention to the role of gravity. If QQ is in the same direction as gravity, a self-organized state can arise, in which the entire sample has a uniform reduced temperature, on either the normal or superfluid side of the transition. Finally, we review recent theory and experiment regarding the heat capacity at constant QQ. The excitement that surrounds this field arises from the fact that advanced thermometry and the future availability of a microgravity experimental platform aboard the International Space Station will soon open to experimental exploration decades of reduced temperature that were previously inaccessible.Comment: 16 pages, 9 figures, plus harvard.sty style file for references Accepted for publication in Colloquia section of Reviews of Modern Physic
    • 

    corecore