9 research outputs found

    Multiancestry analysis of the HLA locus in Alzheimer's and Parkinson's diseases uncovers a shared adaptive immune response mediated by HLA-DRB1*04 subtypes

    Full text link
    Across multiancestry groups, we analyzed Human Leukocyte Antigen (HLA) associations in over 176,000 individuals with Parkinson's disease (PD) and Alzheimer's disease (AD) versus controls. We demonstrate that the two diseases share the same protective association at the HLA locus. HLA-specific fine-mapping showed that hierarchical protective effects of HLA-DRB1*04 subtypes best accounted for the association, strongest with HLA-DRB1*04:04 and HLA-DRB1*04:07, and intermediary with HLA-DRB1*04:01 and HLA-DRB1*04:03. The same signal was associated with decreased neurofibrillary tangles in postmortem brains and was associated with reduced tau levels in cerebrospinal fluid and to a lower extent with increased AÎČ42. Protective HLA-DRB1*04 subtypes strongly bound the aggregation-prone tau PHF6 sequence, however only when acetylated at a lysine (K311), a common posttranslational modification central to tau aggregation. An HLA-DRB1*04-mediated adaptive immune response decreases PD and AD risks, potentially by acting against tau, offering the possibility of therapeutic avenues

    Multiancestry analysis of the HLA locus in Alzheimer's and Parkinson's diseases uncovers a shared adaptive immune response mediated by <i>HLA-DRB1*04</i> subtypes

    Get PDF
    Across multiancestry groups, we analyzed Human Leukocyte Antigen (HLA) associations in over 176,000 individuals with Parkinson's disease (PD) and Alzheimer's disease (AD) versus controls. We demonstrate that the two diseases share the same protective association at the HLA locus. HLA-specific fine-mapping showed that hierarchical protective effects of HLA-DRB1*04 subtypes best accounted for the association, strongest with HLA-DRB1*04:04 and HLA-DRB1*04:07, and intermediary with HLA-DRB1*04:01 and HLA-DRB1*04:03. The same signal was associated with decreased neurofibrillary tangles in postmortem brains and was associated with reduced tau levels in cerebrospinal fluid and to a lower extent with increased AÎČ42. Protective HLA-DRB1*04 subtypes strongly bound the aggregation-prone tau PHF6 sequence, however only when acetylated at a lysine (K311), a common posttranslational modification central to tau aggregation. An HLA-DRB1*04-mediated adaptive immune response decreases PD and AD risks, potentially by acting against tau, offering the possibility of therapeutic avenues.</p

    Multiancestry analysis of the HLA locus in Alzheimer's and Parkinson's diseases uncovers a shared adaptive immune response mediated by HLA-DRB1*04 subtypes

    Get PDF
    11 pĂĄginas, 4 figuras, 2 tablas. Datasets en su material suplementario. This article contains supporting information online at https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2302720120/-/DCSupplemental.Across multiancestry groups, we analyzed Human Leukocyte Antigen (HLA) associations in over 176,000 individuals with Parkinson's disease (PD) and Alzheimer's disease (AD) versus controls. We demonstrate that the two diseases share the same protective association at the HLA locus. HLA-specific fine-mapping showed that hierarchical protective effects of HLA-DRB1*04 subtypes best accounted for the association, strongest with HLA-DRB1*04:04 and HLA-DRB1*04:07, and intermediary with HLA-DRB1*04:01 and HLA-DRB1*04:03. The same signal was associated with decreased neurofibrillary tangles in postmortem brains and was associated with reduced tau levels in cerebrospinal fluid and to a lower extent with increased AÎČ42. Protective HLA-DRB1*04 subtypes strongly bound the aggregation-prone tau PHF6 sequence, however only when acetylated at a lysine (K311), a common posttranslational modification central to tau aggregation. An HLA-DRB1*04-mediated adaptive immune response decreases PD and AD risks, potentially by acting against tau, offering the possibility of therapeutic avenues.This work was supported by the Michael J. Fox Foundation grant MJFF-020161 (E.M., Z.G.-O.), NIH and National Institute of Aging grants AG060747 (M.D.G.), AG066206 (Z.H.), AG066515 (Z.H., M.D.G.), the European Union’s Horizon 2020 research and innovation program under the Marie SkƂodowska-Curie (grant agreement No. 890650, Y.L.G.), the Alzheimer’s Association (AARF-20-683984, M.E.B.), and the Iqbal Farrukh and Asad Jamal Fund, a grant from the EU Joint Programme—Neurodegenerative Disease Research (European Alzheimer DNA BioBank, EADB; JPND), the Japan Agency for Medical Research and Development JP21dk0207045 (T.I.), JP21dk020704 (K.O., S.N.), JP21km040550 (K.O.), the Einstein Center for Neurosciences in Berlin (S.M.Y.), the Swedish Research Council (#2018-02532, H.Z.), the European Research Council (#681712, H.Z.), and the Swedish State Support for Clinical Research (#ALFGBG-720931, H.Z.). Inserm UMR1167 is also funded by the Inserm, Institut Pasteur de Lille, Lille MĂ©tropole CommunautĂ© Urbaine, and the French government’s LABEX DISTALZ program (development of innovative strategies for a transdisciplinary approach to AD). Additional funders of individual investigators and institutions who contributed to data collection and genotyping are provided in SI Appendix.Peer reviewe

    Multiancestry analysis of the HLA locus in Alzheimer’s and Parkinson’s diseases uncovers a shared adaptive immune response mediated by HLA-DRB1*04 subtypes

    Get PDF
    Across multiancestry groups, we analyzed Human Leukocyte Antigen (HLA) associations in over 176,000 individuals with Parkinson’s disease (PD) and Alzheimer’s disease (AD) versus controls. We demonstrate that the two diseases share the same protective association at the HLA locus. HLA-specific fine-mapping showed that hierarchical protective effects of HLA-DRB1*04 subtypes best accounted for the association, strongest with HLA-DRB1*04:04 and HLA-DRB1*04:07, and intermediary with HLA-DRB1*04:01 and HLA-DRB1*04:03. The same signal was associated with decreased neurofibrillary tangles in postmortem brains and was associated with reduced tau levels in cerebrospinal fluid and to a lower extent with increased AÎČ42. Protective HLA-DRB1*04 subtypes strongly bound the aggregation-prone tau PHF6 sequence, however only when acetylated at a lysine (K311), a common posttranslational modification central to tau aggregation. An HLA-DRB1*04-mediated adaptive immune response decreases PD and AD risks, potentially by acting against tau, offering the possibility of therapeutic avenues

    APOE-Δ4 and BIN1 increase risk of Alzheimer’s disease pathology but not specifically of Lewy body pathology

    No full text
    Abstract Lewy body (LB) pathology commonly occurs in individuals with Alzheimer’s disease (AD) pathology. However, it remains unclear which genetic risk factors underlie AD pathology, LB pathology, or AD-LB co-pathology. Notably, whether APOE-Δ4 affects risk of LB pathology independently from AD pathology is controversial. We adapted criteria from the literature to classify 4,985 subjects from the National Alzheimer’s Coordinating Center (NACC) and the Rush University Medical Center as AD-LB co-pathology (AD+LB+), sole AD pathology (AD+LB–), sole LB pathology (AD–LB+), or no pathology (AD–LB–). We performed a meta-analysis of a genome-wide association study (GWAS) per subpopulation (NACC/Rush) for each disease phenotype compared to the control group (AD–LB–), and compared the AD+LB+ to AD+LB– groups. APOE-Δ4 was significantly associated with risk of AD+LB– and AD+LB+ compared to AD–LB–. However, APOE-Δ4 was not associated with risk of AD–LB+ compared to AD–LB– or risk of AD+LB+ compared to AD+LB–. Associations at the BIN1 locus exhibited qualitatively similar results. These results suggest that APOE-Δ4 is a risk factor for AD pathology, but not for LB pathology when decoupled from AD pathology. The same holds for BIN1 risk variants. These findings, in the largest AD-LB neuropathology GWAS to date, distinguish the genetic risk factors for sole and dual AD-LB pathology phenotypes. Our GWAS meta-analysis summary statistics, derived from phenotypes based on postmortem pathologic evaluation, may provide more accurate disease-specific polygenic risk scores compared to GWAS based on clinical diagnoses, which are likely confounded by undetected dual pathology and clinical misdiagnoses of dementia type

    Multiancestry analysis of the HLA locus in Alzheimer's and Parkinson's diseases uncovers a shared adaptive immune response mediated by HLA-DRB1*04 subtypes

    No full text
    Across multiancestry groups, we analyzed Human Leukocyte Antigen (HLA) associations in over 176,000 individuals with Parkinson's disease (PD) and Alzheimer's disease (AD) versus controls. We demonstrate that the two diseases share the same protective association at the HLA locus. HLA-specific fine-mapping showed that hierarchical protective effects of HLA-DRB1*04 subtypes best accounted for the association, strongest with HLA-DRB1*04:04 and HLA-DRB1*04:07, and intermediary with HLA-DRB1*04:01 and HLA-DRB1*04:03. The same signal was associated with decreased neurofibrillary tangles in postmortem brains and was associated with reduced tau levels in cerebrospinal fluid and to a lower extent with increased AÎČ42. Protective HLA-DRB1*04 subtypes strongly bound the aggregation-prone tau PHF6 sequence, however only when acetylated at a lysine (K311), a common posttranslational modification central to tau aggregation. An HLA-DRB1*04-mediated adaptive immune response decreases PD and AD risks, potentially by acting against tau, offering the possibility of therapeutic avenues.ISSN:0027-8424ISSN:1091-649

    Protective association of HLA-DRB1*04 subtypes in neurodegenerative diseases implicates acetylated Tau PHF6 sequences

    No full text
    Using genome-wide association data, we analyzed Human Leukocyte Antigen (HLA) associations in over 176,000 individuals with Parkinson’s (PD) or Alzheimer’s (AD) disease versus controls across ancestry groups. A shared genetic association was observed across diseases at rs601945 (PD: odds ratio (OR)=0.84; 95% confidence interval, [0.80; 0.88]; p=2.2×10−13; AD: OR=0.91[0.89; 0.93]; p=1.8×10−22), and with a protective HLA association recently reported in amyotrophic lateral sclerosis (ALS). Hierarchical protective effects of HLA-DRB1*04 subtypes best accounted for the association, strongest with HLA-DRB1*04:04 and HLA-DRB1*04:07, intermediary with HLA-DRB1*04:01 and HLA-DRB1*04:03, and absent for HLA-DRB1*04:05. The same signal was associated with decreased neurofibrillary tangles (but not neuritic plaque density) in postmortem brains and was more strongly associated with Tau levels than AÎČ42 levels in the cerebrospinal fluid. Finally, protective HLA-DRB1*04 subtypes strongly bound the aggregation-prone Tau PHF6 sequence, but only when acetylated at K311, a modification central to aggregation. An HLA-DRB1*04-mediated adaptive immune response, potentially against Tau, decreases PD, AD and ALS risk, offering the possibility of new therapeutic avenues

    Protective association of HLA-DRB1*04 subtypes in neurodegenerative diseases implicates acetylated tau PHF6 sequences

    No full text
    Background Alzheimer’s disease (AD), Parkinson’s disease (PD), Amyotrophic Lateral Sclerosis (ALS) and other neurodegenerative diseases are responsible for considerable morbidity and mortality. With incidence rising with aging, these also represent a growing societal challenge. Pathophysiology involves accumulation of tau (neurofibrillary tangles) and Amyloid-ÎČ-rich (amyloid plaques) aggregates in AD, α-synuclein-rich aggregates (Lewy bodies) in PD and TDP-43 aggregates in ALS, although co-presence of these aggregates may occur. Consensus is also growing that tau may also play a key role in PD and ALS. Method Using genome-wide association data, we analyzed Human Leukocyte Antigen (HLA) associations in over 176,000 individuals with PD or Alzheimer’s AD disease versus controls across ancestry groups. Result A shared genetic association was observed across diseases at rs601945 (PD: odds ratio (OR)=0.84; 95% confidence interval, [0.80; 0.88]; p=2.2x10-13; AD: OR=0.91[0.89; 0.93]; p=1.8x10-22), and with a protective HLA association recently reported in ALS. Hierarchical protective effects of HLA-DRB1*04 subtypes best accounted for the association, strongest with HLA-DRB1*04:04 and HLA-DRB1*04:07, intermediary with HLA-DRB1*04:01 and HLA-DRB1*04:03, and absent for HLA-DRB1*04:05. The same signal was associated with decreased neurofibrillary tangles (but not neuritic plaque density) in postmortem brains and was more strongly associated with tau levels than AÎČ42 levels in the cerebrospinal fluid. Finally, protective HLA-DRB1*04 subtypes strongly bound the aggregation-prone tau PHF6 sequence, but only when acetylated at K311, a modification central to aggregation. Conclusion An HLA-DRB1*04-mediated adaptive immune response, potentially against tau, decreases PD, AD and ALS risk, offering the possibility of new therapeutic avenues

    Multiancestry analysis of the HLA locus in Alzheimer's and Parkinson's diseases uncovers a shared adaptive immune response mediated by HLA-DRB1*04 subtypes

    No full text
    Abstract: Across multiancestry groups, we analyzed Human Leukocyte Antigen (HLA) associations in over 176,000 individuals with Parkinson's disease (PD) and Alzheimer's disease (AD) versus controls. We demonstrate that the two diseases share the same protective association at the HLA locus. HLA-specific fine-mapping showed that hierarchical protective effects of HLA-DRB1*04 subtypes best accounted for the association, strongest with HLA-DRB1*04:04 and HLA-DRB1* 04:07, and intermediary with HLA-DRB1* 04:01 and HLA- DRB1*04:03. The same signal was associated with decreased neurofibrillary tangles in postmortem brains and was associated with reduced tau levels in cerebrospinal fluid and to a lower extent with increased A beta 42. Protective HLA-DRB1*04 subtypes strongly bound the aggregation-prone tau PHF6 sequence, however only when acetylated at a lysine (K311), a common posttranslational modification central to tau aggregation. An HLA-DRB1*04-mediated adaptive immune response decreases PD and AD risks, potentially by acting against tau, offering the possibility of therapeutic avenues
    corecore