424 research outputs found

    Environmental Impacts of Ship Breaking and Recycling Industry of Sitakunda, Chittagong, Bangladesh

    Get PDF
    Ship dismantling of Bangladesh is a reason of concern due to its economic values and environmental hazards. This study focuses on the Ship Breaking and Recycling Industry (SBRI) of Bangladesh to assess the environmental impacts. It was done by analyzing the water quality parameters like, Turbidity, Salinity, Electric conductivity (EC), Dissolved Oxygen (DO), pH, Total Dissolved Solids (TDS), Temperature, Ammonia-Nitrogen, Nitrate–Nitrogen, Phosphate concentrations of inside and surroundings of Ship Breaking Yard. Turbidity ranged from 7.71 to 119 FTU in and 4.07 to 41.74 FTU in inside and outside the ship breaking yard, respectively. Salinity ranged from 0.95 to 14.28 ppt and 0.06 to 0.79 ppt in insde and outside, respectively. Value of EC varied from1.75 to 1280 µs/cm in inside and 0.21 to 15.7 µs/cm in outside, DO ranged from 3.77 to 7.94 mg/l in inside and 1.95 to 5.34 mg/l in outside. TDS value ranged from1280 to 15340 mg/l in inside and 74 to 825 mg/l in outside of ship breaking yard. Ammonia-N value ranged from 0.46 to 7.046 mg/l, Nitrate-N value ranged from 0.10 to 6.9 mg/l and Phosphate value ranged from 0.175 to 4.75 mg/l in the analyzed water sample. Magnitude of environmental alteration by establishment of ship breaking industry was assessed by quantifying Environmental impact value of Study area and the value was found as -93, where ecological parameters value was found -72, Physico-chemical parameters value was -70 and human interest value was found +49 which indicate negative alteration on environment

    Trapped ions in optical lattices for probing oscillator chain models

    Full text link
    We show that a chain of trapped ions embedded in microtraps generated by an optical lattice can be used to study oscillator models related to dry friction and energy transport. Numerical calculations with realistic experimental parameters demonstrate that both static and dynamic properties of the ion chain change significantly as the optical lattice power is varied. Finally, we lay out an experimental scheme to use the spin degree of freedom to probe the phase space structure and quantum critical behavior of the ion chain

    Multiagent cooperation for solving global optimization problems: an extendible framework with example cooperation strategies

    Get PDF
    This paper proposes the use of multiagent cooperation for solving global optimization problems through the introduction of a new multiagent environment, MANGO. The strength of the environment lays in itsflexible structure based on communicating software agents that attempt to solve a problem cooperatively. This structure allows the execution of a wide range of global optimization algorithms described as a set of interacting operations. At one extreme, MANGO welcomes an individual non-cooperating agent, which is basically the traditional way of solving a global optimization problem. At the other extreme, autonomous agents existing in the environment cooperate as they see fit during run time. We explain the development and communication tools provided in the environment as well as examples of agent realizations and cooperation scenarios. We also show how the multiagent structure is more effective than having a single nonlinear optimization algorithm with randomly selected initial points

    Solution of the relativistic Dirac-Hulthen problem

    Full text link
    The one-particle three-dimensional Dirac equation with spherical symmetry is solved for the Hulthen potential. The s-wave relativistic energy spectrum and two-component spinor wavefunctions are obtained analytically. Conforming to the standard feature of the relativistic problem, the solution space splits into two distinct subspaces depending on the sign of a fundamental parameter in the problem. Unique and interesting properties of the energy spectrum are pointed out and illustrated graphically for several values of the physical parameters. The square integrable two-component wavefunctions are written in terms of the Jacobi polynomials. The nonrelativistic limit reproduces the well-known nonrelativistic energy spectrum and results in Schrodinger equation with a "generalized" three-parameter Hulthen potential, which is the sum of the original Hulthen potential and its square.Comment: 13 pages, 3 color figure

    Bulk and Boundary Critical Behavior at Lifshitz Points

    Full text link
    Lifshitz points are multicritical points at which a disordered phase, a homogeneous ordered phase, and a modulated ordered phase meet. Their bulk universality classes are described by natural generalizations of the standard ϕ4\phi^4 model. Analyzing these models systematically via modern field-theoretic renormalization group methods has been a long-standing challenge ever since their introduction in the middle of the 1970s. We survey the recent progress made in this direction, discussing results obtained via dimensionality expansions, how they compare with Monte Carlo results, and open problems. These advances opened the way towards systematic studies of boundary critical behavior at mm-axial Lifshitz points. The possible boundary critical behavior depends on whether the surface plane is perpendicular to one of the mm modulation axes or parallel to all of them. We show that the semi-infinite field theories representing the corresponding surface universality classes in these two cases of perpendicular and parallel surface orientation differ crucially in their Hamiltonian's boundary terms and the implied boundary conditions, and explain recent results along with our current understanding of this matter.Comment: Invited contribution to STATPHYS 22, to be published in the Proceedings of the 22nd International Conference on Statistical Physics (STATPHYS 22) of the International Union of Pure and Applied Physics (IUPAP), 4--9 July 2004, Bangalore, Indi

    Reduction of Allergenicity of Litchi chinensis Flowers Pollen Protein Conjugated with Polysaccharide by Maillard Reaction

    Get PDF
    Background: Allergy to pollen from gymnosperms is well documented in the west. The objective was to define the allergologic protein from Litchi chinensis (Litchi) pollen and conjugate the protein with polysaccharides by Maillard reaction to reduce the allergic effect of that protein. Methods: Total soluble proteins were extracted from the pollen of Litchi flower pollen and subjected to ammonium sulphate precipitation at 80% saturation. Pollen antigen from Litchi chinensis (Litchi) was prepared by gel cutting method and characterized by biochemical and designated by LFPP. The homogeneity of this protein was demonstrated by a single band on SDS-PAGE. The protein then conjugated with galactomannan through Maillard Reaction. The resulting purified pollen protein and conjugated protein were administered to the Swiss albino mice as amount of 5.8mg/kg body weight. Results: The total protein was then separated on a 12% SDS-Polyacrylamide gel which revealed 5 bands between molecular weight range of 29kDa and 69kDa. Each band was recovered from the gel by electroelution and sent for skin tests. 28kDa proteins was the only allergenic protein while others were not shown reactivity in patients. Intraperitoneal injection of the purified protein (LFPP) caused a significant rise in the levels of neutrophils (38-81%) and eosinophils (3-14%) compared to control (P<0.001) whereas conjugated protein caused only a 2% increase of both neutrophils and eosinophils level. On the other hand treatment with LFPP-galactomannan conjugate causes no such change in physical appearance with eosinophils and neutrophils level. Conclusion: The present study demonstrates that the protein extracted and purified from Litchi flowers pollen has been recognized as a new allergen from Bangladesh for the first time and the allergic effects can be reduced by conjugation with polysaccharides

    Challenges in QCD matter physics - The Compressed Baryonic Matter experiment at FAIR

    Full text link
    Substantial experimental and theoretical efforts worldwide are devoted to explore the phase diagram of strongly interacting matter. At LHC and top RHIC energies, QCD matter is studied at very high temperatures and nearly vanishing net-baryon densities. There is evidence that a Quark-Gluon-Plasma (QGP) was created at experiments at RHIC and LHC. The transition from the QGP back to the hadron gas is found to be a smooth cross over. For larger net-baryon densities and lower temperatures, it is expected that the QCD phase diagram exhibits a rich structure, such as a first-order phase transition between hadronic and partonic matter which terminates in a critical point, or exotic phases like quarkyonic matter. The discovery of these landmarks would be a breakthrough in our understanding of the strong interaction and is therefore in the focus of various high-energy heavy-ion research programs. The Compressed Baryonic Matter (CBM) experiment at FAIR will play a unique role in the exploration of the QCD phase diagram in the region of high net-baryon densities, because it is designed to run at unprecedented interaction rates. High-rate operation is the key prerequisite for high-precision measurements of multi-differential observables and of rare diagnostic probes which are sensitive to the dense phase of the nuclear fireball. The goal of the CBM experiment at SIS100 (sqrt(s_NN) = 2.7 - 4.9 GeV) is to discover fundamental properties of QCD matter: the phase structure at large baryon-chemical potentials (mu_B > 500 MeV), effects of chiral symmetry, and the equation-of-state at high density as it is expected to occur in the core of neutron stars. In this article, we review the motivation for and the physics programme of CBM, including activities before the start of data taking in 2022, in the context of the worldwide efforts to explore high-density QCD matter.Comment: 15 pages, 11 figures. Published in European Physical Journal

    Implementing rapid, robust, cost-effective, patient-centred, routine genetic testing in ovarian cancer patients.

    Get PDF
    Advances in DNA sequencing have made genetic testing fast and affordable, but limitations of testing processes are impeding realisation of patient benefits. Ovarian cancer exemplifies the potential value of genetic testing and the shortcomings of current pathways to access testing. Approximately 15% of ovarian cancer patients have a germline BRCA1 or BRCA2 mutation which has substantial implications for their personal management and that of their relatives. Unfortunately, in most countries, routine implementation of BRCA testing for ovarian cancer patients has been inconsistent and largely unsuccessful. We developed a rapid, robust, mainstream genetic testing pathway in which testing is undertaken by the trained cancer team with cascade testing to relatives performed by the genetics team. 207 women with ovarian cancer were offered testing through the mainstream pathway. All accepted. 33 (16%) had a BRCA mutation. The result informed management of 79% (121/154) women with active disease. Patient and clinician feedback was very positive. The pathway offers a 4-fold reduction in time and 13-fold reduction in resource requirement compared to the conventional testing pathway. The mainstream genetic testing pathway we present is effective, efficient and patient-centred. It can deliver rapid, robust, large-scale, cost-effective genetic testing of BRCA1 and BRCA2 and may serve as an exemplar for other genes and other diseases
    corecore