50 research outputs found
Evaluation of Leaf Spot Resistance in Wild \u3ci\u3eArachis\u3c/i\u3e Species of Section \u3ci\u3eArachis\u3c/i\u3e
Wild diploid Arachis species are potential sources of resistance to early (ELS) and late (LLS) leaf spot diseases caused by Passalora arachidicola (syn. Cercospora arachidicola Hori), and Nothopassalora personata (syn. Cercosporidium personatum (Berk. & Curt.) Deighton), respectively. Within section Arachis, limited information is available on the extent of genetic variation for resistance to these fungal pathogens. A collection of 78 accessions representing 15 wild species of Arachis section Arachis from the U.S peanut germplasm collection was evaluated for resistance to leaf spots. Screening was conducted under field (natural inoculum) conditions in Dawson, Georgia, during 2017 and 2018. Accessions differed significantly (P , 0.01) for all three disease variables evaluated, which included final defoliation rating, ELS lesion counts, and LLS lesion counts. Relatively high levels of resistance were identified for both diseases, with LLS being the predominant pathogen during the two years of evaluation. This research documents new sources of resistance to leaf spot diseases selected from an environment with high inoculum pressure. The presence of ELS and LLS enabled the selection of resistant germplasm for further introgression and pre-breeding
Communication: Molecular-level insights into asymmetric triblock copolymers: Network and phase development
Copyright (2014) AIP Publishing. This article may be downloaded for personal use only. Any other use requires prior permission of the author and AIP
Publishing.
The following article appeared in Journal of Chemical Physics (Communication) 141 and may be found at http://dx.doi.org/10.1063/1.4896612Molecularly asymmetric triblock copolymers progressively grown from a parent diblock copolymer
can be used to elucidate the phase and property transformation from diblock to network-forming triblock
copolymer. In this study, we use several theoretical formalisms and simulation methods to examine
the molecular-level characteristics accompanying this transformation, and show that reported
macroscopic-level transitions correspond to the onset of an equilibrium network. Midblock conformational
fractions and copolymer morphologies are provided as functions of copolymer composition
and temperature.Nonwovens Institute at North Carolina State University and the Polish Ministry of Science and Higher Education (Grant No. N204 125039)
Relationships of the wild peanut species, section Arachis: a resource for botanical classification, crop improvement, and germplasm management.
Premise Wild species are strategic sources of valuable traits to be introduced into crops through hybridization. For peanut, the 33 currently described wild species in the section Arachis are particularly important because of their sexual compatibility with the domesticated species, Arachis hypogaea. Although numerous wild accessions are carefully preserved in seed banks, their morphological similarities pose challenges to routine classification. Methods Using a high-density array, we genotyped 272 accessions encompassing all diploid species in section Arachis. Detailed relationships between accessions and species were revealed through phylogenetic analyses and interpreted using the expertise of germplasm collectors and curators. Results Two main groups were identified: one with A genome species and the other with B, D, F, G, and K genomes. Species groupings generally showed clear boundaries. Structure within groups was informative, for instance, revealing the history of the proto-domesticate A. stenosperma. However, some groupings suggested multiple sibling species. Others were polyphyletic, indicating the need for taxonomic revision. Annual species were better defined than perennial ones, revealing limitations in applying classical and phylogenetic species concepts to the genus. We suggest new species assignments for several accessions. Conclusions Curated by germplasm collectors and curators, this analysis of species relationships lays the foundation for future species descriptions, classification of unknown accessions, and germplasm use for peanut improvement. It supports the conservation and curation of current germplasm, both critical tasks considering the threats to the genus posed by habitat loss and the current restrictions on new collections and germplasm transfer
Analytical protocols for separation and electron microscopy of nanoparticles interacting with bacterial cells
An important step toward understanding interactions between nanoparticles (NPs) and bacteria is the ability to directly observe NPs interacting with bacterial cells. NPbacteria mixtures typical in nanomedicine, however, are not yet amendable for direct imaging in solution. Instead, evidence of NPcell interactions must be preserved in derivative (usually dried) samples to be subsequently revealed in high-resolution images, e.g., via scanning electron microscopy (SEM). Here, this concept is realized for a mixed suspension of model NPs and Staphylococcus aureus bacteria. First, protocols for analyzing the relative colloidal stabilities of NPs and bacteria are developed and validated based on systematic centrifugation and comparison of colony forming unit (CFU) counting and optical density (OD) measurements. Rate-dependence of centrifugation efficiency for each component suggests differential sedimentation at a specific predicted rate as an effective method for removing free NPs after co-incubation; the remaining fraction comprises bacteria with any associated NPs and can be examined, e.g., by SEM, for evidence of NPbacteria interactions. These analytical protocols, validated by systematic control experiments and high-resolution SEM imaging, should be generally applicable for investigating NPbacteria interactions.financial support from the following sources:
grant SFRH/BPD/47693/2008 from the Portuguese Foundation for Science and Technology (FCT); FCT Strategic Project PEst-OE/EQB/LA0023/2013; project âBioHealth Biotechnology
and Bioengineering approaches to improve health qualityâ, Ref. NORTE-07-0124-FEDER-000027, cofunded by the Programa Operacional Regional do Norte (ON.2âO Novo
Norte), QREN, FEDER; project âConsolidating Research Expertise and Resources on Cellular and Molecular Biotechnology at CEB/IBBâ, ref. FCOMP-01-0124-FEDER- 027462
Hollow mesoporous silica nanoparticles for intracellular delivery of fluorescent dye
In this study, hollow mesoporous silica nanoparticles (HMSNs) were synthesized using the sol-gel/emulsion approach and its potential application in drug delivery was assessed. The HMSNs were characterized, by transmission electron microscopy (TEM), Scanning Electron Microscopy (SEM), nitrogen adsorption/desorption and Brunauer-Emmett-Teller (BET), to have a mesoporous layer on its surface, with an average pore diameter of about 2 nm and a surface area of 880 m2/g. Fluorescein isothiocyanate (FITC) loaded into these HMSNs was used as a model platform to assess its efficacy as a drug delivery tool. Its release kinetic study revealed a sequential release of FITC from the HMSNs for over a period of one week when soaked in inorganic solution, while a burst release kinetic of the dye was observed just within a few hours of soaking in organic solution. These FITC-loaded HMSNs was also found capable to be internalized by live human cervical cancer cells (HeLa), wherein it was quickly released into the cytoplasm within a short period of time after intracellular uptake. We envision that these HMSNs, with large pores and high efficacy to adsorb chemicals such as the fluorescent dye FITC, could serve as a delivery vehicle for controlled release of chemicals administered into live cells, opening potential to a diverse range of applications including drug storage and release as well as metabolic manipulation of cells
Phase-Change Thermoplastic Elastomer Blends for Tunable Shape Memory by Physical Design
Intelligent polymeric
materials are of increasing interest in contemporary
technologies due to their low cost, light weight, facile processability,
and inherent ability to change properties, shape, and/or size upon
exposure to an external stimulus. In this study, we consider thermally
programmable shape-memory polymers (SMPs), which typically rely on
chemistry-specific macromolecules composed of two functional species.
An elastic, network-forming component permits stretched polymer chains
to return to their relaxed state, and a switching component affords
at least one thermal transition to regulate fixation of a desired
strain state and return to a previous strain state. Here, we produce
designer shape-memory materials by combining thermoplastic elastomeric
triblock copolymers with a midblock-selective phase-change additive,
thereby yielding shape-memory polymer blends (SMPBs). These materials
not only exhibit tunable switch points but also controllable recovery
kinetics. We further highlight the versatility of SMPBs through laminate
welding for intermediate multishape fabrication and liquid metal inclusion
for shape-memory electronics