1,646 research outputs found

    Horn Fly Control and Growth Implants are Effective Strategies for Heifers Grazing Flint Hills Pasture

    Get PDF
    Horn flies (Haematobia irritans (L.)) are considered the most important external parasite that negatively affects pasture-based beef systems with losses estimated to exceed $1 billion annually to the U.S. beef industry. Control strategies have relied heavily on insecticide applications to control horn flies and are implemented when the economic threshold of 200 flies/animal have been exceeded. When horn fly populations are maintained below 200 flies/animal by treating them with insecticides then the level of stress annoyance behaviors such as leg stomping, head throwing, and skin twitching decreases while grazing increases. While most stocker operators utilize some type of fly control these are rarely used as a single pharmaceutical technology to aid in performance of the animals. Additional pharmaceutical technologies are utilized in combination of others, with the use of de-wormers and implants showing the largest impact with performance of stockers. The objective of this study was to compare a commercial injectable insecticide, LongRange, to an insecticidal ear tag for horn fly control and determine the impact of weight performance on stockers when fly control technologies were used in combination with implants versus no implants

    A novel missense mutation in the C-terminal domain of lipoprotein lipase (Glu410-->Val) leads to enzyme inactivation and familial chylomicronemia.

    Get PDF

    Effects of eddy vorticity forcing on the mean state of the Kuroshio Extension

    Get PDF
    Author Posting. © American Meteorological Society, 2015. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 45 (2015): 1356–1375, doi:10.1175/JPO-D-13-0259.1.Eddy–mean flow interactions along the Kuroshio Extension (KE) jet are investigated using a vorticity budget of a high-resolution ocean model simulation, averaged over a 13-yr period. The simulation explicitly resolves mesoscale eddies in the KE and is forced with air–sea fluxes representing the years 1995–2007. A mean-eddy decomposition in a jet-following coordinate system removes the variability of the jet path from the eddy components of velocity; thus, eddy kinetic energy in the jet reference frame is substantially lower than in geographic coordinates and exhibits a cross-jet asymmetry that is consistent with the baroclinic instability criterion of the long-term mean field. The vorticity budget is computed in both geographic (i.e., Eulerian) and jet reference frames; the jet frame budget reveals several patterns of eddy forcing that are largely attributed to varicose modes of variability. Eddies tend to diffuse the relative vorticity minima/maxima that flank the jet, removing momentum from the fast-moving jet core and reinforcing the quasi-permanent meridional meanders in the mean jet. A pattern associated with the vertical stretching of relative vorticity in eddies indicates a deceleration (acceleration) of the jet coincident with northward (southward) quasi-permanent meanders. Eddy relative vorticity advection outside of the eastward jet core is balanced mostly by vertical stretching of the mean flow, which through baroclinic adjustment helps to drive the flanking recirculation gyres. The jet frame vorticity budget presents a well-defined picture of eddy activity, illustrating along-jet variations in eddy–mean flow interaction that may have implications for the jet’s dynamics and cross-frontal tracer fluxes.A. S. Delman (ASD) and J. L. McClean (JLM) were supported by NSF Grant OCE-0850463 and Office of Science (BER), U.S. Department of Energy, Grant DE-FG02-05ER64119. ASD and J. Sprintall were also supported by a NASA Earth and Space Science Fellowship (NESSF), Grant NNX13AM93H. JLM was also supported by U.S. DOE Office of Science grant entitled “Ultra-High Resolution Global Climate Simulation” via a Los Alamos National Laboratory subcontract. S. R. Jayne was supported by NSF Grant OCE-0849808. Computational resources for the model run were provided by NSF Resource Grants TG-OCE110013 and TG-OCE130010.2015-11-0

    Scattering and leapfrogging of vortex rings in a superfluid

    Full text link
    The dynamics of vortex ring pairs in the homogeneous nonlinear Schr\"odinger equation is studied. The generation of numerically-exact solutions of traveling vortex rings is described and their translational velocity compared to revised analytic approximations. The scattering behavior of co-axial vortex rings with opposite charge undergoing collision is numerically investigated for different scattering angles yielding a surprisingly simple result for its dependence as a function of the initial vortex ring parameters. We also study the leapfrogging behavior of co-axial rings with equal charge and compare it with the dynamics stemming from a modified version of the reduced equations of motion from a classical fluid model derived using the Biot-Savart law.Comment: 12 pages, 11 figure

    Systematic Review on the Management of Chronic Constipation in North America

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/72642/1/j.1572-0241.2005.50613_2.x.pd

    Sensitivity of the Atlantic meridional overturning circulation to South Atlantic freshwater anomalies

    No full text
    The sensitivity of the Atlantic Meridional Overturning Circulation (AMOC) to changes in basin integrated net evaporation is highly dependent on the zonal salinity contrast at the southern border of the Atlantic. Biases in the freshwater budget strongly affect the stability of the AMOC in numerical models. The impact of these biases is investigated, by adding local anomaly patterns in the South Atlantic to the freshwater fluxes at the surface. These anomalies impact the freshwater and salt transport by the different components of the ocean circulation, in particular the basin-scale salt-advection feedback, completely changing the response of the AMOC to arbitrary perturbations. It is found that an appropriate dipole anomaly pattern at the southern border of the Atlantic Ocean can collapse the AMOC entirely even without a further hosing. The results suggest a new view on the stability of the AMOC, controlled by processes in the South Atlantic. <br/

    Surveillance of RNase P, PMMoV, and CrAssphage in wastewater as indicators of human fecal concentration across urban sewer neighborhoods, Louisville, Kentucky

    Get PDF
    Wastewater surveillance has been widely used as a supplemental method to track the community infection levels of severe acute respiratory syndrome coronavirus 2. A gap exists in standardized reporting for fecal indicator concentrations, which can be used to calibrate the primary outcome concentrations from wastewater monitoring for use in epidemiological models. To address this, measurements of fecal indicator concentration among wastewater samples collected from sewers and treatment centers in four counties of Kentucky (N = 650) were examined. Results from the untransformed wastewater data over 4 months of sampling indicated that the fecal indicator concentration of human ribonuclease P (RNase P) ranged from 5.1 × 101 to 1.15 × 106 copies/ml, pepper mild mottle virus (PMMoV) ranged from 7.23 × 103 to 3.53 × 107 copies/ml, and cross-assembly phage (CrAssphage) ranged from 9.69×103 to 1.85×108 copies/ml. The results showed both regional and temporal variability. If fecal indicators are used as normalization factors, knowing the daily sewer system flow of the sample location may matter more than rainfall. RNase P, while it may be suitable as an internal amplification and sample adequacy control, has less utility than PMMoV and CrAssphage as a fecal indicator in wastewater samples when working at different sizes of catchment area. The choice of fecal indicator will impact the results of surveillance studies using this indicator to represent fecal load. Our results contribute broadly to an applicable standard normalization factor and assist in interpreting wastewater data in epidemiological modeling and monitoring

    Graphene plasmonics: A platform for strong light-matter interaction

    Get PDF
    Graphene plasmons provide a suitable alternative to noble-metal plasmons because they exhibit much larger confinement and relatively long propagation distances, with the advantage of being highly tunable via electrostatic gating. We report strong light- matter interaction assisted by graphene plasmons, and in particular, we predict unprecedented high decay rates of quantum emitters in the proximity of a carbon sheet, large vacuum Rabi splitting and Purcell factors, and extinction cross sections exceeding the geometrical area in graphene ribbons and nanometer-sized disks. Our results provide the basis for the emerging and potentially far-reaching field of graphene plasmonics, offering an ideal platform for cavity quantum electrodynamics and supporting the possibility of single-molecule, single-plasmon devices.Comment: 39 pages, 15 figure

    Destabilization of the thermohaline circulation by transient perturbations to the hydrological cycle

    Full text link
    We reconsider the problem of the stability of the thermohaline circulation as described by a two-dimensional Boussinesq model with mixed boundary conditions. We determine how the stability properties of the system depend on the intensity of the hydrological cycle. We define a two-dimensional parameters' space descriptive of the hydrology of the system and determine, by considering suitable quasi-static perturbations, a bounded region where multiple equilibria of the system are realized. We then focus on how the response of the system to finite-amplitude surface freshwater forcings depends on their rate of increase. We show that it is possible to define a robust separation between slow and fast regimes of forcing. Such separation is obtained by singling out an estimate of the critical growth rate for the anomalous forcing, which can be related to the characteristic advective time scale of the system.Comment: 37 pages, 8 figures, submitted to Clim. Dy

    Proteomics: in pursuit of effective traumatic brain injury therapeutics

    Get PDF
    Effective traumatic brain injury (TBI) therapeutics remain stubbornly elusive. Efforts in the field have been challenged by the heterogeneity of clinical TBI, with greater complexity among underlying molecular phenotypes than initially conceived. Future research must confront the multitude of factors comprising this heterogeneity, representing a big data challenge befitting the coming informatics age. Proteomics is poised to serve a central role in prescriptive therapeutic development, as it offers an efficient endpoint within which to assess post-TBI biochemistry. We examine rationale for multifactor TBI proteomic studies and the particular importance of temporal profiling in defining biochemical sequences and guiding therapeutic development. Lastly, we offer perspective on repurposing biofluid proteomics to develop theragnostic assays with which to prescribe, monitor and assess pharmaceutics for improved translation and outcome for TBI patients
    • 

    corecore