7,188 research outputs found

    Master\u27s Project - Wildlife Habitat Linkages Surrounding the Lake George and Southern Lake Champlain Region

    Get PDF
    Conservation priorities – when developed systematically and objectively – can maximize land protection efforts in heterogeneous landscapes susceptible to parcelization and development. One such region surrounds Lake George and Southern Lake Champlain, nested between the Green and Adirondack Mountains. This mosaic of conserved and private parcels sits upon an array of forest, agriculture, wetland, and development valuable to both humans and resident wildlife species. This landscape’s inherent connectedness provides many benefits to wildlife, including species richness, enhanced persistence, and increased genetic interchange. However, it is difficult to make definitive statements about potential wildlife movement through such complex matrices. Therefore, wildlife modeling approaches have evolved to paint a clearer picture of landscape connectivity. Sam Talbot, ecological planning graduate student at the University of Vermont, worked with the Lake Champlain Land Trust and Lake George Land Conservancy to incorporate landscape connectivity and wildlife corridors into their strategic conservation planning efforts. This project, including a least-cost corridor analysis of the region to highlight large swaths of contiguous habitat, provides the information critical to such conservation efforts. Using the ArcGIS program CorridorDesigner to conduct the analysis, with custom model parameters, identifies three discrete latitudinal corridors between large established wildland blocks. These outputs were then evaluated and compared based on several landscape factors. Ultimately, this study will inform conservation and management decisions, as well as enhance dialogue among local conservation organizations

    Summertime ozone at Mount Washington: Meteorological controls at the highest peak in the northeast

    Get PDF
    This study examined the synoptic and regional-scale meteorological controls on summertime O3 at Mount Washington, the highest peak (1910 m) in the northeastern United States. Analysis of air mass transport to Mount Washington was conducted for the summers of 1998–2003 using backward trajectories. Distinct patterns in air mass history were revealed using this approach that helped explain extreme variations in O3 mixing ratios. Most enhanced (≥90th percentile) and depleted (≤10th percentile) O3 events were short-lived and spread out over the summer months. Enhanced O3 events at Mount Washington were generally associated with westerly transport, while depleted events corresponded to northwesterly transport. Periods of O3 greater than 80 ppbv during nighttime periods coincided with westerly (71%) and southwesterly (29%) transport. Periods of elevated O3 commonly occurred during regional warm sector flow or on the western edge of a surface anticyclone. Our analysis also identified a stratospheric contribution to a small percentage (∼5%) of extreme O3 events at the site, but more evidence is required to establish the significance of the contribution to background O3levels in this region

    Composition and distribution of aerosols over the North Atlantic during the Subsonic Assessment Ozone and Nitrogen Oxide Experiment (SONEX)

    Get PDF
    We report the mixing ratios of aerosol-associated soluble ions (focusing on SO4= and NO3−) and HNO3 over the North Atlantic during NASA\u27s Subsonic Assessment Ozone and Nitrogen Oxide Experiment (SONEX). The SONEX campaign was designed to quantify the impacts of jet emissions in the North Atlantic Flight Corridor (NAFC) by sampling both directly within and far removed from the organized track system. Beryllium-7 activities were also measured to assess the magnitude of stratospheric influence in the SONEX study region. Mixing ratios of aerosol-associated SO4= and NO3− above 8 km during SONEX were lower than recent measurements over the central United States during the Subsonic Aircraft Contrail and Cloud Effects Special Study (SUCCESS) and the same as those over the remote South Pacific during the Pacific Exploratory Mission-Tropics (PEM-Tropics), suggesting that aircraft emissions cannot yet be a major source of these ions. Furthermore, mean SO4= mixing ratios at high altitudes were 65% higher in regions away from the NAFC than they were directly in the track system just a few hours after peak traffic. Nitric acid mixing ratios at the highest DC-8 sampling altitudes were elevated during SONEX compared to PEM-Tropics, but there was no clear signal of enhancement by jet exhaust. Strong correlations with 7Be indicate that a large fraction of HNO3and aerosol-associated SO4= measured at high altitudes during SONEX were derived from a stratospheric source

    Tropospheric sulfate distribution during SUCCESS: Contributions from jet exhaust and surface sources

    Get PDF
    The distribution of SO4= aerosol over the central US during SUCCESS indicates that surface sources of SO4= and SO2 in the western US caused SO4= enhancements up to 10 km altitude. The mean (median) SO4= mixing ratio in the mid- and upper-troposphere increased from 24 (16) pptv over the Pacific ocean to 58 (29) pptv over the central plains. Above 10 km the SO4=mixing ratio was essentially the same in both regions, and also when the geographic classifications were further partitioned into upper tropospheric and lower stratospheric categories (mean near 40 pptv). No obvious enhancements of SO4= could be detected in jet exhaust plumes, but this may reflect the difficulty of keeping a large airborne sampling platform within a turbulent wake for time periods longer than a few seconds. Expected SO4=enhancements (based on observed CO2 enhancements and emission factors for these two species) were generally much smaller than the variability of ambient SO4= mixing ratios, so our null result does not mean that aircraft do not emit H2SO4

    Influence of vertical transport on free tropospheric aerosols over the central USA in springtime

    Get PDF
    Measurements of the atmospheric aerosol chemical composition during the Subsonic Aircraft: Contrail and Cloud Effects Special Study (SUCCESS) indicate substantial vertical transport of boundary layer aerosol to the free troposphere over the south-central United States during springtime. Mixing ratios of water-soluble aerosol Ca 2+ at 6 - 12 km altitude exhibited a median mixing ratio of 20 pptv, with 15% of the measurements \u3e 100 pptv and a maximum of ! 235 pptv. In air parcels with enhanced Ca 2+, the ratios K+/Ca 2+, Mg2+/Ca 2+, and Na+/Ca 2+ in the bulk aerosol were distinctly characteristic of those in limestone and/or cement. Significantly enhanced mixing ratios of aerosol SO42-, NO3-, and NH4 + were also concomitant with the elevated Ca 2+, suggesting transport of both crustal and anthropogenic aerosols to the upper troposphere. The mass concentration of water-soluble aerosol material was in the range 0.1 - 6 pg m -3 STP, and estimated crustal dust levels were 7 - 160 pg m \u273 ST

    Soluble acidic species in air and snow at Summit, Greenland

    Get PDF
    Simultaneous measurements of the concentrations of soluble acidic species in the gas, aerosol and snow phases at Summit, Greenland were made during summer 1993. Mean concentrations of gas phase HCOOH, CH3COOH, and HNO3 (49±28, 32±17 and 0.9±0.6 nmol m−3 STP, respectively) exceeded the concentrations of aerosol-associated HCOO−, CH3COO−, and NO3−by 1–3 orders of magnitude. On average, SO2 concentrations (0.9±0.6 nmol m−3 STP) were approximately 1/3 those of aerosol SO4=, but this ratio varied widely due largely to changes in the concentration of aerosol SO4=. Concentrations of aerosol SO4= plus SO2 consistently exceeded the sum of aerosol NO3− plus HNO3, yet NO3− was 3–20 times as abundant as SO4=in surface snow. Gas phase concentrations of HCOOH and CH3COOH at Summit were unexpectedly as large as those previously reported for several high latitude continental sites. However, carboxylate concentrations in snow were lower than those of SO4=. Our observation of post-depositional loss of these carboxylic acids within hours after a snowfall must partially explain the low concentrations found in snow. The relative abundance of soluble acids in summer snow at Summit was opposite of that in the overlying atmosphere. Our results highlight the need for improved understanding of the processes controlling transfer of soluble atmospheric species between air and snow

    Beryllium 7 and Lead 210 in the western hemisphere Arctic atmosphere: Observations from three recent aircraft-based sampling programs

    Get PDF
    Concentrations of the natural radionuclides 7Be and 210Pb were determined in aerosol samples collected in the western hemisphere Arctic during the recent NOAA Arctic Gas and Aerosol Sampling Program (AGASP 3) and NASA Global Tropospheric Experiment/Arctic Boundary Layer Expeditions (GTE/ABLE 3A and ABLE 3B) missions. Beryllium 7 showed a free tropospheric concentration maximum between 4 and 5 km in the summer of 1990. Previous 7Be data obtained in the late 1950s and early 1960s also indicated a similar vertical distribution of 7Be near 70°N. Injection of stratospheric air through tropopause folds associated with the Arctic jet near 70°N appears to explain the presence of a layer of air near 4–5 km in the high Arctic free troposphere with elevated 7Be concentrations. The vertical distribution of 210Pb showed a distinct difference between the high-Arctic and sub-Arctic in the summer of 1988. At latitudes greater than 65°N, 210Pb concentrations at 3–6 km were elevated compared to those below 1 km. The reverse of this trend was observed near 60°N. These same vertical distributions were also apparent in aerosol SO42−, determined in separate aerosol samples collected on the same flights (Talbot et al., this issue). The results for 210Pb suggest that some of the difference between the summer troposphere in the high- and sub-Arctic is also due to enhanced stratosphere-troposphere exchange in the vicinity of the Arctic jet. These observations, and other findings from ABLE 3A presented in this issue, suggest that for some species the stratosphere may be a principal source influencing their distribution in the Arctic summer troposphere. For example, intrusions of stratospheric air constitute the dominant source term for tropospheric budgets of 7Be and ozone, and may be important in the 210Pb, SO42−, and NOybudgets. Further investigation, including determination of detailed 7Be and 210Pb distributions, is needed to quantify the stratospheric impact on the chemistry of the Arctic troposphere during the summer

    Measurements of nitric acid, carboxylic acids, and selected aerosol species for the NASA/GTE Pacific Mission - West (PEM-WEST)

    Get PDF
    The research investigation funded through this grant to the University of New Hampshire was performed during a major field expedition conducted by the NASA Tropospheric Chemistry Program. The NASA Global Tropospheric Experiment (GTE) executed an airborne science mission (PEM-WEST A) aboard the NASA Ames DC-8 over the Pacific Ocean during Sep./Oct. 1981. The atmosphere over the central Pacific Ocean is the only major region in the Northern Hemisphere that is relatively free from direct anthropogenic influence. Thus, this environment is ideally suited to study the natural biogeochemical cycles of carbon, nitrogen, ozone, sulfur, and aerosols without serious confounding problems related to anthropogenic emissions. Asian sources account for about 17 percent of the global budgets of nitrogen oxides (NO(x)) and sulfur dioxide (SO2). The Pacific Rim region therefore provides the opportunity to study the anthropogenic impact on natural atmospheric chemical cycles. The PEM-WEST A flights were focused on contrasting the chemistry of 'clean' air over the central Pacific with anthropogenically impacted air advected off the Asian continent. The principal objectives of PEM-WEST A were to investigate the atmospheric chemistry of ozone (O3) and its precursors, and to study important aspects of the atmospheric sulfur cycle over the western Pacific Ocean. Measurements conducted by the University of New Hampshire contributed directly to both of these objectives. Subsequent PEM-WEST field missions are planned by GTE in the mid-1990's to contrast atmospheric chemistry documented during PEM-WEST A with other time periods. This report presents preliminary findings from the PEM-WEST A field mission. Data interpretation is currently ongoing with the goal of manuscript submission of scientific results to a special issue of the Journal of Geophysical Research-Atmospheres in Feb. 1994. The reader is strongly encouraged to review this suite of profession articles to appreciate the overall scientific findings and benefits of the PEM-WEST A field mission

    Real Estate Equity Investments and the Institutional Lender: Nothing Ventured, Nothing Gained

    Get PDF
    We consider a setup in which the channel from Alice to Bob is less noisy than the channel from Eve to Bob. We show that there exist encoding and decoding which accomplish error correction and authentication simultaneously; that is, Bob is able to correctly decode a message coming from Alice and reject a message coming from Eve with high probability. The system does not require any secret key shared between Alice and Bob, provides information theoretic security, and can safely be composed with other protocols in an arbitrary context
    • …
    corecore