35 research outputs found
ENCRYPTING IMAGE BY USING FUZZY LOGIC ALGORITHM
Data communication is transmission data from a point to another. Nowadays main issue in data communication is the security. It can provide a fine solution by encryption. The encryption algorithm is the mathematical process for performing encryption on data. The proposed algorithm supports for user desired security level and processing level. The algorithm provides security levels and their corresponding processing levels by generating random keys for the encryption/decryption process. This facility is achieved by using fuzzy logic. The results of the proposed encryption algorithm will be analyzed by comparing with other existing encryption algorithms. The aim of the research is to build a new algorithm using fuzzy sets requirement which will be more advanced than the existing encryption algorithms
EV-SIFT - An Extended Scale Invariant Face Recognition for Plastic Surgery Face Recognition
Automatic recognition of people faces many challenging problems which has experienced much attention due to many applications in different fields during recent years. Face recognition is one of those challenging problem which does not have much technique to solve all situations like pose, expression, and illumination changes, and/or ageing. Facial expression due to plastic surgery is one of the additional challenges which arise recently. This paper presents a new technique for accurate face recognition after the plastic surgery. This technique uses Entropy based SIFT (EV-SIFT) features for the recognition purpose. The corresponding feature extracts the key points and volume of the scale-space structure for which the information rate is determined. This provides least effect on uncertain variations in the face since the entropy is the higher order statistical feature. The corresponding EV-SIFT features are applied to the Support vector machine for classification. The normal SIFT feature extracts the key points based on the contrast of the image and the V- SIFT feature extracts the key points based on the volume of the structure. But the EV- SIFT method provides the contrast and volume information. This technique provides better performance when compare with PCA, normal SIFT and V-SIFT based feature extraction
Generative Adversarial Networks based Skin Lesion Segmentation
Skin cancer is a serious condition that requires accurate identification and
treatment. One way to assist clinicians in this task is by using computer-aided
diagnosis (CAD) tools that can automatically segment skin lesions from
dermoscopic images. To this end, a new adversarial learning-based framework
called EGAN has been developed. This framework uses an unsupervised generative
network to generate accurate lesion masks. It consists of a generator module
with a top-down squeeze excitation-based compound scaled path and an asymmetric
lateral connection-based bottom-up path, and a discriminator module that
distinguishes between original and synthetic masks. Additionally, a
morphology-based smoothing loss is implemented to encourage the network to
create smooth semantic boundaries of lesions. The framework is evaluated on the
International Skin Imaging Collaboration (ISIC) Lesion Dataset 2018 and
outperforms the current state-of-the-art skin lesion segmentation approaches
with a Dice coefficient, Jaccard similarity, and Accuracy of 90.1%, 83.6%, and
94.5%, respectively. This represents a 2% increase in Dice Coefficient, 1%
increase in Jaccard Index, and 1% increase in Accuracy
Brain extraction on MRI scans in presence of diffuse glioma: Multi-institutional performance evaluation of deep learning methods and robust modality-agnostic training
Brain extraction, or skull-stripping, is an essential pre-processing step in neuro-imaging that has a direct impact on the quality of all subsequent processing and analyses steps. It is also a key requirement in multi-institutional collaborations to comply with privacy-preserving regulations. Existing automated methods, including Deep Learning (DL) based methods that have obtained state-of-the-art results in recent years, have primarily targeted brain extraction without considering pathologically-affected brains. Accordingly, they perform sub-optimally when applied on magnetic resonance imaging (MRI) brain scans with apparent pathologies such as brain tumors. Furthermore, existing methods focus on using only T1-weighted MRI scans, even though multi-parametric MRI (mpMRI) scans are routinely acquired for patients with suspected brain tumors. In this study, we present a comprehensive performance evaluation of recent deep learning architectures for brain extraction, training models on mpMRI scans of pathologically-affected brains, with a particular focus on seeking a practically-applicable, low computational footprint approach, generalizable across multiple institutions, further facilitating collaborations. We identified a large retrospective multi-institutional dataset of n=3340 mpMRI brain tumor scans, with manually-inspected and approved gold-standard segmentations, acquired during standard clinical practice under varying acquisition protocols, both from private institutional data and public (TCIA) collections. To facilitate optimal utilization of rich mpMRI data, we further introduce and evaluate a novel ‘‘modality-agnostic training’’ technique that can be applied using any available modality, without need for model retraining. Our results indicate that the modality-agnostic approach1 obtains accurate results, providing a generic and practical tool for brain extraction on scans with brain tumors
Deep learning based automated epidermal growth factor receptor and anaplastic lymphoma kinase status prediction of brain metastasis in non-small cell lung cancer
Aim: The aim of this study was to investigate the feasibility of developing a deep learning (DL) algorithm for classifying brain metastases from non-small cell lung cancer (NSCLC) into epidermal growth factor receptor (EGFR) mutation and anaplastic lymphoma kinase (ALK) rearrangement groups and to compare the accuracy with classification based on semantic features on imaging. Methods: Data set of 117 patients was analysed from 2014 to 2018 out of which 33 patients were EGFR positive, 43 patients were ALK positive and 41 patients were negative for either mutation. Convolutional neural network (CNN) architecture efficient net was used to study the accuracy of classification using T1 weighted (T1W) magnetic resonance imaging (MRI) sequence, T2 weighted (T2W) MRI sequence, T1W post contrast (T1post) MRI sequence, fluid attenuated inversion recovery (FLAIR) MRI sequences. The dataset was divided into 80% training and 20% testing. The associations between mutation status and semantic features, specifically sex, smoking history, EGFR mutation and ALK rearrangement status, extracranial metastasis, performance status and imaging variables of brain metastasis were analysed using descriptive analysis [chi-square test (χ2)], univariate and multivariate logistic regression analysis assuming 95% confidence interval (CI). Results: In this study of 117 patients, the analysis by semantic method showed 79.2% of the patients belonged to ALK positive were non-smokers as compared to double negative groups (P = 0.03). There was a 10-fold increase in ALK positivity as compared to EGFR positivity in ring enhancing lesions patients (P = 0.015) and there was also a 6.4-fold increase in ALK positivity as compared to double negative groups in meningeal involvement patients (P = 0.004). Using CNN Efficient Net DL model, the study achieved 76% accuracy in classifying ALK rearrangement and EGFR mutations without manual segmentation of metastatic lesions. Analysis of the manually segmented dataset resulted in improved accuracy of 89% through this model. Conclusions: Both semantic features and DL model showed comparable accuracy in classifying EGFR mutation and ALK rearrangement. Both methods can be clinically used to predict mutation status while biopsy or genetic testing is undertaken
MoNuSAC2020:A Multi-Organ Nuclei Segmentation and Classification Challenge
Detecting various types of cells in and around the tumor matrix holds a special significance in characterizing the tumor micro-environment for cancer prognostication and research. Automating the tasks of detecting, segmenting, and classifying nuclei can free up the pathologists' time for higher value tasks and reduce errors due to fatigue and subjectivity. To encourage the computer vision research community to develop and test algorithms for these tasks, we prepared a large and diverse dataset of nucleus boundary annotations and class labels. The dataset has over 46,000 nuclei from 37 hospitals, 71 patients, four organs, and four nucleus types. We also organized a challenge around this dataset as a satellite event at the International Symposium on Biomedical Imaging (ISBI) in April 2020. The challenge saw a wide participation from across the world, and the top methods were able to match inter-human concordance for the challenge metric. In this paper, we summarize the dataset and the key findings of the challenge, including the commonalities and differences between the methods developed by various participants. We have released the MoNuSAC2020 dataset to the public
Motion estimation techniques for digital video coding
The book deals with the development of a methodology to estimate the motion field between two frames for video coding applications. This book proposes an exhaustive study of the motion estimation process in the framework of a general video coder. The conceptual explanations are discussed in a simple language and with the use of suitable figures. The book will serve as a guide for new researchers working in the field of motion estimation techniques