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Abstract
Aim: The aim of this study was to investigate the feasibility of developing a deep learning (DL) algorithm 
for classifying brain metastases from non-small cell lung cancer (NSCLC) into epidermal growth factor 
receptor (EGFR) mutation and anaplastic lymphoma kinase (ALK) rearrangement groups and to compare 
the accuracy with classification based on semantic features on imaging.
Methods: Data set of 117 patients was analysed from 2014 to 2018 out of which 33 patients were EGFR 
positive, 43 patients were ALK positive and 41 patients were negative for either mutation. Convolutional 
neural network (CNN) architecture efficient net was used to study the accuracy of classification using T1 
weighted (T1W) magnetic resonance imaging (MRI) sequence, T2 weighted (T2W) MRI sequence, T1W post 
contrast (T1post) MRI sequence, fluid attenuated inversion recovery (FLAIR) MRI sequences. The dataset 
was divided into 80% training and 20% testing. The associations between mutation status and semantic 
features, specifically sex, smoking history, EGFR mutation and ALK rearrangement status, extracranial 
metastasis, performance status and imaging variables of brain metastasis were analysed using descriptive 
analysis [chi-square test (χ2)], univariate and multivariate logistic regression analysis assuming 95% 
confidence interval (CI).
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Results: In this study of 117 patients, the analysis by semantic method showed 79.2% of the patients 
belonged to ALK positive were non-smokers as compared to double negative groups (P = 0.03). There was a 
10-fold increase in ALK positivity as compared to EGFR positivity in ring enhancing lesions patients 
(P = 0.015) and there was also a 6.4-fold increase in ALK positivity as compared to double negative groups 
in meningeal involvement patients (P = 0.004). Using CNN Efficient Net DL model, the study achieved 76% 
accuracy in classifying ALK rearrangement and EGFR mutations without manual segmentation of metastatic 
lesions. Analysis of the manually segmented dataset resulted in improved accuracy of 89% through this 
model.
Conclusions: Both semantic features and DL model showed comparable accuracy in classifying EGFR 
mutation and ALK rearrangement. Both methods can be clinically used to predict mutation status while 
biopsy or genetic testing is undertaken.
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Introduction
Lung cancer is one of the major challenges in medical oncology. It is the most common cause of cancer 
related death in the world [1–3]. Up to 64% of all patients with lung cancer develop brain metastasis [4, 5]. 
Data from several patient series have shown that the median age of anaplastic lymphoma kinase (ALK) 
positive non-small cell lung cancer (NSCLC) patients is 55 years which is about 10 years to 15 years lower 
than for the general NSCLC population and also the epidermal growth factor receptor (EGFR) mutated 
patients, approximately 70% of these patients are never smokers [6]. Human genome sequencing has 
ensured identification of epigenetic mutations, tumour-suppressor-gene inactivation and pro-oncogene 
mutations that might be potentially targeted for therapy [7–12]. For NSCLC, EGFR mutations and on 
abnormal fusion of ALK being targeted successfully with EGFR tyrosine kinase inhibitors (TKI) and ALK 
inhibitors respectively.

Classically, brain metastases seen on magnetic resonance imaging (MRI) occurring at grey and white 
matter junction can have varying imaging parameters such as size, post contrast enhancement, peri-lesional 
edema. There has been increased interest in research for the characterization of quantitative imaging 
features reflecting tumor biology, physiology and tumor phenotype using artificial intelligence (AI) based 
algorithms. Radiomics and deep learning (DL)-AI based models are extensively used in medical 
imaging [13–15] which basically involves image segmentation and detection. This image segmentation 
usually relies on manual delineation which is time-consuming and subject to inter- or intra-segmentation 
variation. Secondly, despite the segmentation of images being accurate, no standard method for image 
feature extraction is available and errors due to miscalculation are encountered as it is difficult to verify the 
accuracy and reproducibility of image features.

Advanced AI models such as the neural network based DL method can overcome these problems 
through a self-learning strategy and presents a promising tool for genomic analysis [16–19]. The DL 
method can be correlated with the functioning of the neural network in the brain. In comparison to 
radiomic methods, precise tumor boundary annotation is not required with DL and thus saves a lot of time 
and human effort [20–24]. Furthermore, DL method takes into consideration the microenvironment of the 
surrounding lung parenchyma and can extract features that are adaptive to specific clinical outcomes, 
whereas radiomics can only describe general features which lacks specificity for outcome 
prediction [25–29].

The primary objective of this study was to develop a novel DL model to segment brain metastasis and 
to categorize the lesions into EGFR positive, ALK positive and double negative groups. Additionally, 
classification was also performed based on semantic features i.e., clinical and imaging features.
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Materials and methods
Patient cohort

Between January 2014 and December 2018, there were 117 lung cancer patients with brain metastasis 
underwent molecular profiling, from which 33 patients were EGFR positive, 43 patients were ALK positive 
and 41 patients were negative for either mutation. DL-based classification data was highly imbalanced as 
predominant sample size belongs to adenocarcinoma class and only a small proportion of cases belonged to 
squamous carcinoma groups. Hence, the classification was based on presence and absence of the EGFR 
mutation and ALK rearrangement. These patients underwent pre-treatment MRI brain at Tata Memorial 
Hospital (TMH), had the necessary data in digital imaging and communications in medicine (DICOM) format 
on picture archiving and communication system (PACS) and clinical data on endoscopic mucosal resection 
(EMR), and were therefore included in this study. Cases lacking molecular profiling and those who 
underwent local therapy were excluded from this study. Patients on systemic chemotherapy were included 
in study. This study was conducted under project number 3296 in TMH institutional ethics committee 
(IEC-1).

Radiology review

The DL model was trained using one or more slices containing the tumour and optimized to use the slice 
with the maximum dimension of the tumour. For classification of semantic features, a clinical radiologist in 
TMH with 10 years of experience in MRI of brain tumours and other radiologists with 2 years’ experience 
retrospectively interpreted the magnetic resonance (MR) images independently. Both radiologists were 
blinded to clinical and histologic findings.

Methodology
Classification using semantic features

MRI was performed on two 1.5 Tesla MRI scanners–General Electric (GE), Signa HDxt 1.5 T (Milwaukee, 
Wisconsin, USA) and Philips Ingenia 1.5 Tesla (Amsterdam, The Netherlands and one 3.0 Tesla MRI 
scanner–GE, Signa HDxt 3.0 Tesla (Milwaukee, Wisconsin, USA). Clinical parameters assessed were sex, 
smoking history, EGFR mutation status, ALK rearrangement status, histological subtype, extracranial 
metastasis, performance status, treatment received, response to therapy, date of diagnosis, date of 
detection of metastasis and time from diagnosis to response to treatment, as shown in Table S1.

Development of DL algorithm and classification

Using a convoluted neural network, DL aims to learn the abstract mapping between raw data to the desired 
label. The main components of convolutional neural networks (CNN) are convolution, pooling, activation 
and batch normalization (refer to Figure 1A). EfficientNetB0 CNN architecture uses a compound scaling 
method, which systematically improves model performance by balancing all compound coefficients of the 
architecture width, depth, and image resolution (Figure 1B). The overall dataset is divided into three main 
categories namely, EGFR positive (33 cases), ALK positive (43 cases) and double negative (41 cases). For the 
classification of MR images, each case is provided with four MR sequences: T1, T2, T1 weighted (T1W) post 
contrast (T1post), and fluid attenuated inversion recovery (FLAIR). Firstly, the data was converted from 
DICOM to Neuroimaging Informatics Technology Initiative (NIfTI) format and all four MR sequences were 
skull stripped and brain volume was extracted. Further, the MR images were co-registered and interpolated 
to 1 mm3 resolution (refer to Figure 2A). Metastases for all the cases were then annotated manually using 
ITK snap toolbox (Refer to Figure 2B). The annotated MR dataset was then classified into three classes with 
popular DL-based classifiers with transfer learning and performance. Heavy data augmentation was used to 
increase the data for training in which the dataset was divided into 80% training and 20% test dataset. 
Efficient Net B0 model was implemented with Keras code which is based on the Keras package with tensor 
flow as backend in Python. Keras makes use of graphical processing units (GPUs) to speed up the DL 
algorithms. Training was done using CNN architecture on an NVIDIA P100 graphics processing unit (GPU) 
card with 16 giga byte (GB) memory which took about 32 h.
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Figure 1. Structure of CNN. (a) Building blocks of a typical CNN; (b) architecture for baseline network EfficientNetB0

Statistical analysis

Statistical analysis was performed using Statistical Package for Social Sciences (IBMSPSS; IBM Corp., 
Armonk, NY, USA) version 21. Data was descriptively analysed using frequency and percentage for 
categorical data and mean [standard deviation (SD)]/median [inter quartile range (IQR)] for continuous 
data. Chi-square test (χ2) for independence was used to compare association between two categorical 
variables. Continuous data was compared using independent t test/Mann-Whitney U test as appropriate. A 
multivariable multinomial logistic regression was performed to model the relationship between the 
predictors of mutation in the three groups (double negative, EGFR positive, ALK positive). Area under the 
curve (AUC) and receiver operating characteristics (ROC) curves were used to present the accuracy of 
different predictive models. All statistics were 2-sided, and a value of P < 0.05 was considered statistically 
significant.
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Figure 2. Skull stripping and annotation of images. (a) Axial T1W MRI sequence image the brain before and after skull stripping; 
(b) annotation of MR images. A: anterior; P: posterior; R: right; L: Left

Results
Results of classification based on clinical and MRI semantic features

For statistical analysis using the semantic method, association between the mutation groups and clinical 
parameters were assessed using χ2. The dataset was divided into EGFR mutation positive, ALK 
rearrangement positive and double negative groups. Multivariate analysis was performed between EGFR 
positive and double negative group, ALK positive and double negative group (Table 1) and ALK positive and 
EGFR positive groups (Table 2). Statistical results from revealed that lesions showing fuzzy T2 borders and 
intralesional haemorrhage had 7.8 times and 6.5 times more odds of being EGFR positive respectively 
(P = 0.009 and 0.025, respectively) as opposed to double negative group with an AUC of 0.894 [95% 
confidence interval (CI): 0.825–0.964] (Figure 3A).
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Table 1. Multivariate analysis of EGFR and ALK positive vs. double negative groups

EGFR positive vs. negative ALK positive vs. negativePredictor variables Level
Sig. OR Sig. OR

Intercept - 0.691 - 0.618 -
Number of lesions - 0.061 1.028 (0.999, 1.057) 0.013 1.037 (1.008, 1.068)

Yes 0.147 0.316 (0.066, 1.499) 0.037 0.208 (0.047, 0.913)Smoking history
No REF
Squamous 0.826 0.769 (0.074, 7.949) 0.164 0.160 (0.012, 2.112)Histology
Adenocarcinoma REF
Hypointense 0.413 0.424 (0.054, 3.311) 0.123 4.099 (0.684, 24.573)
Heterogeneous 0.707 0.630 (0.057, 6.977) 0.467 0.360 (0.023, 5.661)

T2W

Hyperintense REF
Defined REFT2 borders
Fuzzy 0.009 7.858 (1.681, 36.742) 0.242 2.401 (0.554, 10.408)
Present 0.025 6.490 (1.267, 33.240) 0.771 0.787 (0.157, 3.952)Hemorrhage
Absent REF
Central 0.302 0.329 (0.040, 2.721) 0.479 0.402 (0.032, 4.994)
Complete 0.058 0.100 (0.009, 1.080) 0.106 0.113 (0.008, 1.586)
Peripheral 0.023 0.044 (0.003, 0.650) 0.074 4.227 (0.867, 20.600)

Diffusion restriction

None REF
Patchy 0.198 3.606 (0.51, 25.478) 0.292 2.946 (0.394, 22.004)
Ring 0.715 1.43 (0.209, 9.775) 0.005 14.879 (2.278, 97.189)

Enhancement pattern

Homogeneous REF
Present 0.594 1.584 (0.292, 8.591) 0.045 6.394 (1.046, 39.071)Meningeal involvement
Absent REF

Lung metastasis Present 0.054 6.329 (0.967, 41.427) 0.007 12.47 (1.995, 77.925)
Absent REF

Sig.: significance; OR: odds ratio; -: not applicable; REF: reference; T2W: T2 weighted. Data in parentheses () are 95% CIs

Table 2. Multivariate analysis of ALK positive vs. EGFR positive groups

Predictor variables Level Sig. OR
Intercept - 0.939 -
Number of lesions - 0.030 1.009 (1.001, 1.018)

Yes 0.636 0.659 (0.117, 3.705)Smoking history
No REF
Squamous 0.358 0.208 (0.007, 5.926)Histology
Adenocarcinoma REF
Hypointense 0.025 9.668 (1.338, 69.884)
Heterogeneous 0.705 0.571 (0.031, 10.354) 
Hyperintense REF
Defined REF

T2W

Fuzzy 0.113 0.306 (0.071, 1.324)
Present 0.013 0.121 (0.023, 0.646)Hemorrhage
Absent REF
Central 0.866 1.222 (0.120, 12.458)
Complete 0.926 1.124 (0.096, 13.167)
Peripheral 0.001 95.513 (5.946, 1534.295)

Diffusion restriction

None REF
Patchy 0.826 0.817 (0.135, 4.959)
Ring 0.015 10.404 (1.58, 68.526)

Enhancement pattern

Homogeneous REF
Present 0.124 4.036 (0.682, 23.893)Meningeal involvement
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Predictor variables Level Sig. OR
Absent REF
Present 0.372 1.970 (0.445, 8.729)Lung metastasis
Absent REF

Data in parentheses () are 95% CIs; -: not applicable

Figure 3. ROC of dataset. (a) ROC areas of EGFR mutation vs. negative; (b) ROC areas of ALK mutation vs. negative; (c) ROC 
areas of ALK positive vs. EGFR mutation

Smokers were 79.2% less likely to be ALK positive as opposed to double negative groups (P = 0.037). 
Lesions which showed ring enhancement and meningeal involvement had 14.8 times and 6.4 times more 
odds of being ALK positive respectively (P = 0.005 and P = 0.045, respectively) as compared to the double 
negative group. Presence of synchronous lung metastasis was 12.5 times more prevalent in ALK positive as 
compared to double negative group (P = 0.007) with an AUC of 0.912 [95% CI: 0.859–0.965] (Figure 3B). 
Statistical results from (Table 2) revealed that lesions, which showed peripheral diffusion restriction, had 
95% more odds of being ALK positive as compared to EFGR positive group showing no diffusion restriction 
(P = 0.001). Lesions which showed ring enhancement and T2W hypo intense signal intensity had 10 times 
more odds of being ALK positive as compared to EGFR positive group (P = 0.015 and P = 0.025, 
respectively), with an AUC of 0.912 [95% CI: 0.859–0.965] (Figure 3C).

Results of DL-based classification

For analysis using DL models, the dataset was divided into 80% training and 20% testing. As each class had 
less than 50 patients, the augmented data was reshuffled for the classification task and for unbiased 
training of the classifier heavy data augmentation techniques. Different deep neural network architectures 
were used to classify the brain metastatic lesions. EfficientNetB0 showed the greatest accuracy among 
other CNN architectures in classifying the brain metastasis with an accuracy of 76% prior to manual 
segmentation of lesions, which got improved post segmentation accuracy of 89% (Table 3 and Figure 4). 
Accuracy of classification was shown to be significantly higher when aided by manual segmentation across 
all CNN architectures used in the study.

Table 3. Accuracy on validation/hold-out dataset

Architecture name Accuracy without segmentation Accuracy post segmentation
ResNet18 0.52 0.62
ResNet34 0.56 0.65
ResNet50 0.61 0.66
MobileNetV1 0.60 0.66
MobileNetV2 0.62 0.69
Xception 0.74 0.83
EfficientNetB0 0.76 0.89
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Figure 4. Architecture showing accuracies pre and post segmentation

Discussion
A significant proportion of patients with primary lung cancer develop brain metastasis during the disease 
course. Recent developments in the research of pathophysiology and molecular biology have led to the 
further understanding of different molecular mutations, which have been proven potentially useful in 
therapeutic oncology [30–32]. EGFR mutation and ALK rearrangement have been in focus recently since 
they can be targeted for molecular therapy. Recently developed and more specific molecular targeted 
therapy such as osimertinib in EGFR mutation [33] has been proven to increase the survival in patients with 
a specific mutation.

In the first part of the study, 117 patients were analysed of carcinoma lung with positive MRI scan for 
brain metastasis in which clinical parameters showed statistical significance. In this study, clinical 
parameters viz., age and smoking history showed a statistically significant impact on mutation status (P = 
0.001 and P = 0.0002, respectively). A clinical study conducted by Gao et al. [34] showed age and smoking 
history have a statistically significant impact on ALK status. Another clinical study by Bhatt et al. [35] 
showed age and sex had a statistically significant impact on EFGR mutation (P = 0.001 and P = 0.0001, 
respectively). Similarly, a study by Rangachari et al. [36] statistically significant impact of age on EFGR 
mutation (P = 0.0001). However, it should be noted that above-mentioned studies did not use imaging 
parameters. Statistical analysis of semantic features in the current study showed both EGFR mutation and 
ALK rearrangement were significantly less prevalent in smokers who developed NSCLC. Fuzzy T2 borders 
and intralesional haemorrhage could be used to differentiate EGFR positivity from the double negative 
group. Ring enhancement, meningeal involvement and synchronous lung metastasis can be used to 
differentiate ALK positivity from the double negative group. Peripheral diffusion restriction, ring 
enhancement and T2W hypo intense signal intensity can be used to differentiate ALK positivity from EFGR 
positivity.

In the second part of the study, performance of the DL model for classification of brain metastases was 
evaluated. A deeper understanding of radiomics has shown much finer imaging features specific to a 
mutation can be delineated even when using standard imaging sequences. But consistent manual 
identification of such features might not always be accurate and is more time consuming. Development of 
an automated computed algorithm, which can be trained to identify the subtle subclinical imaging features 
with precision and within a much shorter timeframe, was the purpose of this study. Pre-treatment basic MR 
sequences namely T1, T2, FLAIR and T1post contrast sequences of 117 patients having brain metastasis 
belonging to EGFR positive, ALK positive and double negative groups were included. The case parameters 
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were derived from the studies by Wadhwa et al. [37] and Mahajan et al. [38]. To homogenize the MR images 
across different sequences, skull stripping, co-registration and brain volume extraction was done. Then all 
the metastatic brain lesions were manually segmented using ITK snap toolbox. Multiple neural network 
architectures were fed with both unsegmented and manually segmented datasets. DL-based classification 
data was highly imbalanced as predominant sample size belongs to adenocarcinoma class and only a small 
proportion of cases belonged to squamous carcinoma groups. Hence the classification was based on the 
presence and absence of the EGFR mutation and ALK rearrangement. For the classification task, each class 
had less than 50 patients. To train the classifier, heavy data augmentation techniques like rotation, flip, etc. 
available in Keras were used. The augmented data was reshuffled for unbiased training. This dataset is then 
divided into 80% training and 20% test dataset. The models were trained to optimize the loss and to 
improve classification accuracy. DL model showed good predictive performance with pre-segmentation 
accuracy of 76% and post segmentation accuracy of 89%. The performance of the model in classifying the 
metastases improved significantly after the manual segmentation. During training and validation, since the 
case data was shuffled, class-wise true positive (TP), true negative (TN) and false positive (FP), false 
negative (FN) was not covered in the analysis. EfficientNetB0 with improved model scaling provides better 
accuracy over other CNN architectures and hence can be used to train complex data sets. No other 
published study shares similar objectives with this study.

This study concludes that both semantic features and DL model showed comparable accuracy in 
classifying EGFR mutation and ALK rearrangement in metastatic brain lesions. Application of both the 
methods in clinical practice may be useful to predict mutations in a patient while the biopsy or genetic 
mutation testing is awaited.

This was a site-specific study on NSCLC patients. Hence, the data is not applicable to other primary 
cancers such as breast or colon cancer. The radiomics and DL model were trained only on brain metastases 
from adenocarcinoma and a few cases of squamous cell carcinoma of the lung. Other genetic mutation i.e., 
ROS proto-oncogene 1, receptor tyrosine kinase (Ros-1) and Kristen rat sarcoma viral oncogene homolog 
(KRAS) mutations were not included in the current study. As each class had less than 50 patients, the 
augmented dataset was reshuffled for the classification task and for unbiased training of the classifier’s 
heavy data augmentation techniques. This dataset was then divided into 80% training dataset and 20% test 
dataset. Hence the class-wise analysis of true positive, true negative, false positive, and false negative was 
not feasible in this study. The performance of the proposed approach will significantly improve with a 
larger dataset in each class for more accurate classification.

In conclusion, both semantic features and DL models showed comparable accuracy in classifying EGFR 
mutation and ALK rearrangement. Both methods are non-invasive and can be clinically used to predict 
mutation status while invasive procedures-biopsy or genetic testing is undertaken. Application of both the 
methods in future clinical practice may help predict mutations in a patient while the biopsy or genetic 
mutation testing is awaited.
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