20 research outputs found
Enhancement of Jc by Hf -Doping in the Superconductor MgB2: A Hyperfine Interaction Study
Measurements of the critical current density (Jc) by magnetization and the
upper critical field (Hc2) by magnetoresistance have been performed for
hafnium-doped MgB2. There has been a remarkable enhancement of Jc as compared
to that by ion irradiation without any appreciable decrease in Tc, which is
beneficial from the point of view of applications. The irreversibility line
extracted from Jc shows an upward shift. In addition, there has been an
increase in the upper critical field which indicates that Hf partially
substitutes for Mg. Hyperfine interaction parameters obtained from time
differential perturbed angular correlation (TDPAC) measurements revealed the
formation of HfB and HfB2 phases along with the substitution of Hf. A possible
explanation is given for the role of these species in the enhancement of Jc in
MgB2 superconductor
Neon ion Irradiation studies on MgB2 Superconductor
160 MeV Neon ion irradiation has been carried out on MgB2 polycrystalline
pellets at various doses. There has not been any significant change in Tc
except at the highest dose of 1x10^15 ions/cm^2. Increase in resistivity has
been noticed. Resistivity data has been fitted with Bloch-Gruneisen function
and the values of Debye temperature, residual resistivity and temperature
coefficient of resistivity have been extracted for irradiated as well as
unirradiated samples. The increase in the resistivity of irradiated samples has
been explained in the light of damage in the 3D pi bonding network of B.Comment: 15 pages, 3 figure
Mitotic kinesin Eg5 overcomes inhibition to the phase I/II clinical candidate SB743921 by an allosteric resistance mechanism
Development of drug resistance during cancer chemotherapy is one of the major causes of chemotherapeutic failure for the majority of clinical agents. The aim of this study was to investigate the underlying molecular mechanism of resistance developed by the mitotic kinesin Eg5 against the potent second-generation ispinesib analogue SB743921 (1), a phase I/II clinical candidate. Biochemical and biophysical data demonstrate that point mutations in the inhibitor-binding pocket decrease the efficacy of 1 by several 1000-fold. Surprisingly, the structures of wild-type and mutant Eg5 in complex with 1 display no apparent structural changes in the binding configuration of the drug candidate. Furthermore, ITC and modeling approaches reveal that resistance to 1 is not through conventional steric effects at the binding site but through reduced flexibility and changes in energy fluctuation pathways through the protein that influence its function. This is a phenomenon we have called “resistance by allostery”
Indolobenzazepin-7-ones and 6-, 8-, and 9-Membered Ring Derivatives as Tubulin Polymerization Inhibitors: Synthesis and Structure−Activity Relationship Studies
Several small weight indole derivatives (D-64131, D-24851, BPR0L075, BLF 61-3, and ATI derivatives) are potent tubulin polymerization inhibitors and show nanomolar antiproliferative activity. Among them, indolobenzazepin-7-ones were recently disclosed as potent antimitotic agents. In an effort to improve this structure, we prepared new derivatives in order to evaluate their antiproliferative activity. 5,6,7,9-Tetrahydro-8H-indolo[2,3-e][3]benzazocin-g-one (1m) was found to be the most potent derivative inhibiting the cell growth of several cancer cell lines in the lower nanomolar range
OptimizedS-trityl-l-cysteine-based inhibitors of kinesin spindle protein with potent in vivo antitumor activity in lung cancer xenograft models
The mitotic kinesin Eg5 is critical for the assembly of the mitotic spindle and is a promising chemotherapy target. Previously, we identified S-trityl-l-cysteine as a selective inhibitor of Eg5 and developed triphenylbutanamine analogues with improved potency, favorable drug-like properties, but moderate in vivo activity. We report here their further optimization to produce extremely potent inhibitors of Eg5 (Kiapp < 10 nM) with broad-spectrum activity against cancer cell lines comparable to the Phase II drug candidates ispinesib and SB-743921. They have good oral bioavailability and pharmacokinetics and induced complete tumor regression in nude mice explanted with lung cancer patient xenografts. Furthermore, they display fewer liabilities with CYP-metabolizing enzymes and hERG compared with ispinesib and SB-743921, which is important given the likely application of Eg5 inhibitors in combination therapies. We present the case for this preclinical series to be investigated in single and combination chemotherapies, especially targeting hematological malignancies
Analysis of the human cofilin 1 structure reveals conformational changes required for actin binding
The actin cytoskeleton is the chassis that gives a cell its shape and structure, and supplies the power for numerous dynamic processes including motility, endocytosis, intracellular transport and division. To perform these activities, the cytoskeleton undergoes constant remodelling and reorganization. One of the major actin-remodelling families are the cofilin proteins, made up of cofilin 1, cofilin 2 and actin-depolymerizing factor (ADF), which sever aged ADP-associated actin filaments to reduce filament length and provide new potential nucleation sites. Despite the significant interest in cofilin as a central node in actin-cytoskeleton dynamics, to date the only forms of cofilin for which crystal structures have been solved are from the yeast, Chromalveolata and plant kingdoms; none have previously been reported for an animal cofilin protein. Two distinct regions in animal cofilin are significantly larger than in the forms previously crystallized, suggesting that they would be uniquely organized. Therefore, it was sought to determine the structure of human cofilin 1 by X-ray crystallography to elucidate how it could interact with and regulate dynamic actin-cytoskeletal structures. Although wild-type human cofilin 1 proved to be recalcitrant, a C147A point mutant yielded crystals that diffracted to 2.8 Å resolution. These studies revealed how the actin-binding helix undergoes a conformational change that increases the number of potential hydrogen bonds available for substrate binding