967 research outputs found

    Improving energy modeling of large building stock through the development of archetype buildings

    Get PDF
    12th Conference of International Building Performance Simulation Associatio

    Ecophysiology of seedlings of three Mediterranean pine species in contrasting light regimes

    Get PDF
    Seasonal dynamics of net photosynthesis (Anet) in 2-year-old seedlings of Pinus brutia Ten., Pinus pinea L. and Pinus pinaster Ait. were investigated. Seedlings were grown in the field in two light regimes: sun (ambient light) and shade (25% of photosynthetically active radiation (PAR)). Repeated measures analyses over a 12-month period showed that Anet varied significantly among species and from season to season. Maximum Anet in sun-acclimated seedlings was low in winter (yet remained positive) and peaked during summer. Maximum Anet was observed in June in P. pinea (12 ÎŒmol m–2 s–1), July in P. pinaster (23 ÎŒmol m–2 s–1) and August in P. brutia (20 ÎŒmol m–2 s–1). Photosynthetic light response curves saturated at a PAR of 200–300 ÎŒmol m–2 s–1 in winter and in shade-acclimated seedlings in summer. Net photosynthesis in sun-acclimated seedlings did not saturate at PAR up to 1900 ÎŒmol m–2 s–1 in P. brutia and P. pinaster. Minimum air temperature of the preceding night was apparently one of the main factors controlling Anet during the day. In shade-acclimated seedlings, photosynthetic rates were reduced by 50% in P. brutia and P. pinaster and by 20% in P. pinea compared with those in sun-acclimated seedlings. Stomatal conductance was generally lower in shaded seedlings than in seedlings grown in the sun, except on days with a high vapor pressure deficit. Total chlorophyll concentration per unit leaf area, specific leaf area (SLA) and height significantly increased in P. pinea in response to shade, but not in P. pinaster or P. brutia. In response to shade, P. brutia showed a significant increase in total chlorophyll concentration but not SLA. Photosynthetic and growth data indicate that P. pinaster and P. brutia are more light-demanding than P. pinea

    Ecophysiology of seedlings of three Mediterranean pine species in contrasting light regimes

    Get PDF
    Seasonal dynamics of net photosynthesis (Anet) in 2-year-old seedlings of Pinus brutia Ten., Pinus pinea L. and Pinus pinaster Ait. were investigated. Seedlings were grown in the field in two light regimes: sun (ambient light) and shade (25% of photosynthetically active radiation (PAR)). Repeated measures analyses over a 12-month period showed that Anet varied significantly among species and from season to season. Maximum Anet in sun-acclimated seedlings was low in winter (yet remained positive) and peaked during summer. Maximum Anet was observed in June in P. pinea (12 ÎŒmol m–2 s–1), July in P. pinaster (23 ÎŒmol m–2 s–1) and August in P. brutia (20 ÎŒmol m–2 s–1). Photosynthetic light response curves saturated at a PAR of 200–300 ÎŒmol m–2 s–1 in winter and in shade-acclimated seedlings in summer. Net photosynthesis in sun-acclimated seedlings did not saturate at PAR up to 1900 ÎŒmol m–2 s–1 in P. brutia and P. pinaster. Minimum air temperature of the preceding night was apparently one of the main factors controlling Anet during the day. In shade-acclimated seedlings, photosynthetic rates were reduced by 50% in P. brutia and P. pinaster and by 20% in P. pinea compared with those in sun-acclimated seedlings. Stomatal conductance was generally lower in shaded seedlings than in seedlings grown in the sun, except on days with a high vapor pressure deficit. Total chlorophyll concentration per unit leaf area, specific leaf area (SLA) and height significantly increased in P. pinea in response to shade, but not in P. pinaster or P. brutia. In response to shade, P. brutia showed a significant increase in total chlorophyll concentration but not SLA. Photosynthetic and growth data indicate that P. pinaster and P. brutia are more light-demanding than P. pinea

    The Solar Twin Planet Search I. Fundamental parameters of the stellar sample

    Get PDF
    Context. We are carrying out a search for planets around a sample of solar twin stars using the HARPS spectrograph. The goal of this project is to exploit the advantage offered by solar twins to obtain chemical abundances of unmatched precision. This survey will enable new studies of the stellar composition - planet connection.Aims. We determine the fundamental parameters of the 88 solar twin stars that have been chosen as targets for our experiment.Methods. We used the MIKE spectrograph on the Magellan Clay Telescope to acquire high resolution, high signal-to-noise ratio spectra of our sample stars. We measured the equivalent widths of iron lines and used strict differential excitation/ionization balance analysis to determine atmospheric parameters of unprecedented internal precision: σ(Teff) = 7? K, σ(log? g) = 0.019, σ([Fe/H]) = 0.006? dex, σ(vt) = 0.016? km? s-1. Reliable relative ages and highly precise masses were then estimated using theoretical isochrones.Results. The spectroscopic parameters we derived are in good agreement with those measured using other independent techniques. There is even better agreement if the sample is restricted to those stars with the most internally precise determinations of stellar parameters in every technique involved. The root-mean-square scatter of the differences seen is fully compatible with the observational errors, demonstrating, as assumed thus far, that systematic uncertainties in the stellar parameters are negligible in the study of solar twins. We find a tight activity-age relation for our sample stars, which validates the internal precision of our dating method. Furthermore, we find that the solar cycle is perfectly consistent both with this trend and its star-to-star scatter.Conclusions. We present the largest sample of solar twins analyzed homogeneously using high quality spectra. The fundamental parameters derived from this work will be employed in subsequent work that aims to explore the connections between planet formation and stellar chemical composition

    High precision abundances of the old solar twin HIP 102152: Insights on Li depletion from the oldest sun

    Get PDF
    We present the first detailed chemical abundance analysis of the old 8.2 Gyr solar twin, HIP 102152. We derive differential abundances of 21 elements relative to the Sun with precisions as high as 0.004 dex (â‰Č1%), using ultra high-resolution (R = 110,0

    The Tissue-Engineered Vascular Graft-Past, Present, and Future

    Get PDF
    Cardiovascular disease is the leading cause of death worldwide, with this trend predicted to continue for the foreseeable future. Common disorders are associated with the stenosis or occlusion of blood vessels. The preferred treatment for the long-term revascularization of occluded vessels is surgery utilizing vascular grafts, such as coronary artery bypass grafting and peripheral artery bypass grafting. Currently, autologous vessels such as the saphenous vein and internal thoracic artery represent the gold standard grafts for small-diameter vessels (<6 mm), outperforming synthetic alternatives. However, these vessels are of limited availability, require invasive harvest, and are often unsuitable for use. To address this, the development of a tissue-engineered vascular graft (TEVG) has been rigorously pursued. This article reviews the current state of the art of TEVGs. The various approaches being explored to generate TEVGs are described, including scaffold-based methods (using synthetic and natural polymers), the use of decellularized natural matrices, and tissue self-assembly processes, with the results of various in vivo studies, including clinical trials, highlighted. A discussion of the key areas for further investigation, including graft cell source, mechanical properties, hemodynamics, integration, and assessment in animal models, is then presented

    A20, a modulator of smooth muscle cell proliferation and apoptosis, prevents and induces regression of neointimal hyperplasia

    Full text link
    A20 is a NF‐ÎșB‐dependent gene that has dual anti‐inflammatory and antiapoptotic functions in endothelial cells (EC). The function of A20 in smooth muscle cells (SMC) is unknown. We demonstrate that A20 is induced in SMC in response to inflammatory stimuli and serves an anti‐inflammatory function via blockade of NF‐ÎșB and NF‐ÎșB‐dependent proteins ICAM‐1 and MCP‐1. A20 inhibits SMC proliferation via increased expression of cyclin‐dependent kinase inhibitors p21waf1 and p27kip1. Surprisingly, A20 sensitizes SMC to cytokine‐ and Fas‐mediated apoptosis through a novel NO‐dependent mechanism. In vivo, adenoviral delivery of A20 to medial rat carotid artery SMC after balloon angioplasty prevents neointimal hyperplasia by blocking SMC proliferation and accelerating re‐endothelialization, without causing apoptosis. However, expression of A20 in established neointimal lesions leads to their regression through increased apoptosis. This is the first demonstration that A20 exerts two levels of control of vascular remodeling and healing. A20 prevents neointimal hyperplasia through combined anti‐inflammatory and antiproliferative functions in medial SMC. If SMC evade this first barrier and neointima is formed, A20 has a therapeutic potential by uniquely sensitizing neointimal SMC to apoptosis. A20‐based therapies hold promise for the prevention and treatment of neointimal disease.—Patel, V. I., Daniel, S., Longo, C. R., Shrikhande, G. V., Scali, S. T., Czismadia, E., Groft, C. M., Shukri, T., Motley‐Dore, C., Ramsey, H. E., Fisher, M. D., Grey, S. T., Arvelo, M. B., Ferran, C. A20, a modulator of smooth muscle cell proliferation and apoptosis, prevents and induces regression of neointimal hyperplasia. FASEB J. 20, 1418–1430 (2006)Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/154452/1/fsb2fj054981com.pd

    Tuberculosis contact investigation with a new, specific blood test in a low-incidence population containing a high proportion of BCG-vaccinated persons

    Get PDF
    BACKGROUND: BCG-vaccination can confound tuberculin skin test (TST) reactions in the diagnosis of latent tuberculosis infection. METHODS: We compared the TST with a Mycobacterium tuberculosis specific whole blood interferon-gamma assay (QuantiFERON(Âź)-TB-Gold In Tube; QFT-G) during ongoing investigations among close contacts of sputum smear positive source cases in Hamburg, Germany. RESULTS: During a 6-month period, 309 contacts (mean age 28.5 ± 10.5 years) from a total of 15 source cases underwent both TST and QFT-G testing. Of those, 157 (50.8%) had received BCG vaccination and 84 (27.2%) had migrated to Germany from a total of 25 different high prevalence countries (i.e. >20 cases/100,000). For the TST, the positive response rate was 44.3% (137/309), whilst only 31 (10%) showed a positive QFT-G result. The overall agreement between the TST and the QFT-G was low (Îș = 0.2, with 95% CI 0.14.-0.23), and positive TST reactions were closely associated with prior BCG vaccination (OR 24.7; 95% CI 11.7–52.5). In contrast, there was good agreement between TST and QFT-G in non-vaccinated persons (Îș = 0.58, with 95% CI 0.4–0.68), increasing to 0.68 (95% CI 0.46–0.81), if a 10-mm cut off for the TST was used instead of the standard 5 mm recommended in Germany. CONCLUSION: The QFT-G assay was unaffected by BCG vaccination status, unlike the TST. In close contacts who were BCG-vaccinated, the QFT-G assay appeared to be a more specific indicator of latent tuberculosis infection than the TST, and similarly sensitive in unvaccinated contacts. In BCG-vaccinated close contacts, measurement of IFN-gamma responses of lymphocytes stimulated with M. tuberculosis-specific antigen should be recommended as a basis for the decision on whether to perform subsequent chest X-ray examinations or to start treatment for latent tuberculosis infection
    • 

    corecore