122 research outputs found

    Explicit examples of DIM constraints for network matrix models

    Get PDF
    Dotsenko-Fateev and Chern-Simons matrix models, which describe Nekrasov functions for SYM theories in different dimensions, are all incorporated into network matrix models with the hidden Ding-Iohara-Miki (DIM) symmetry. This lifting is especially simple for what we call balanced networks. Then, the Ward identities (known under the names of Virasoro/W-constraints or loop equations or regularity condition for qq-characters) are also promoted to the DIM level, where they all become corollaries of a single identity.Comment: 46 page

    Frequency ratios of Sr, Yb and Hg based optical lattice clocks and their applications

    Get PDF
    This article describes the recent progress of optical lattice clocks with neutral strontium (87^{87}Sr), ytterbium (171^{171}Yb) and mercury (199^{199}Hg) atoms. In particular, we present frequency comparison between the clocks locally via an optical frequency comb and between two Sr clocks at remote sites using a phase-stabilized fibre link. We first review cryogenic Sr optical lattice clocks that reduce the room-temperature blackbody radiation shift by two orders of magnitude and serve as a reference in the following clock comparisons. Similar physical properties of Sr and Yb atoms, such as transition wavelengths and vapour pressure, have allowed our development of a compatible clock for both species. A cryogenic Yb clock is evaluated by referencing a Sr clock. We also report on a Hg clock, which shows one order of magnitude less sensitivity to blackbody radiation, while its large nuclear charge makes the clock sensitive to the variation of fine-structure constant. Connecting all three types of clocks by an optical frequency comb, the ratios of the clock frequencies are determined with uncertainties smaller than possible through absolute frequency measurements. Finally, we describe a synchronous frequency comparison between two Sr-based remote clocks over a distance of 15 km between RIKEN and the University of Tokyo, as a step towards relativistic geodesy.Comment: 11 pages, 5 figures, invited review article in Comptes Rendus de Physique 201

    イッテルビウム・ストロンチウム光格子時計の時計遷移周波数比測定

    Get PDF
    学位の種別: 課程博士審査委員会委員 : (主査)東京大学教授 香取 秀俊, 東京大学教授 古澤 明, 東京大学准教授 小林 洋平, 東京大学准教授 宇佐見 康二, 横浜国立大学教授 洪 鋒雷University of Tokyo(東京大学

    KofamKOALA: KEGG ortholog assignment based on profile HMM and adaptive score threshold

    Get PDF
    Summary: KofamKOALA is a web server to assign KEGG Orthologs (KOs) to protein sequences by homology search against a database of profile hidden Markov models (KOfam) with pre-computed adaptive score thresholds. KofamKOALA is faster than existing KO assignment tools with its accuracy being comparable to the best performing tools. Function annotation by KofamKOALA helps linking genes to KEGG resources such as the KEGG pathway maps and facilitates molecular network reconstruction. Availability and implementation: KofamKOALA, KofamScan and KOfam are freely available from GenomeNet (https://www.genome.jp/tools/kofamkoala/). Supplementary information: Supplementary data are available at Bioinformatics online

    The Asymmetric Explosion of Type Ia Supernovae as Seen from Near-Infrared Observations

    Get PDF
    We present near-infrared spectra of late-phase (\u3e200 days) Type Ia supernovae (SNe Ia) taken at the Subaru Telescope. The [Fe II] line of SN 2003hv shows a clear flat-topped feature, while that of SN 2005W shows a less prominent flatness. In addition, a large shift in their line center, varying from -3000 to 1000 km s-1 with respect to the host galaxies, is seen. Such a shift suggests the occurrence of an off-center, nonspherical explosion in the central region and provides important, new constraints on the explosion models of SNe Ia

    Signature of Electron Capture in Iron-Rich Ejecta of SN 2003du

    Full text link
    Late-time near-infrared and optical spectra are presented for the normal-bright SN2003du. At about 300 days after the explosion, the emission profiles of well isolated [FeII] lines (in particular that of the strong 1.644mu feature) trace out the global kinematic distribution of radioactive material in the expanding. In SN2003du, the 1.644 mu [FeII] line shows a flat-topped, profile, indicative of a thick but hollow-centered expanding shell, rather than a strongly-peaked profile that would be expected from a ``center-filled'' distribution.Based on detailed models for exploding Chandrasekhar mass white dwarfs, we show that the feature is consistent with spherical explosion models.Our model predicts central region of non-radioactive electron-capture elements up to 2500--3000km/s as a consequence of burning under high density, and an extended region of 56Ni up to 9,000--10,000km/s. Furthermore our analysis indicates that the 1.644mu [FeII] profile is not consistent with strong mixing between the regions of electron- capture isotopes and the 56Ni layers as is predicted by detailed 3D models for nuclear deflagration fronts. We discuss the possibility that the flat-topped profile could be produced as a result of an infrared catastrophe and conclude that such an explanation is unlikely. We put our results in context to other SNeIa and briefly discuss the implications of our result for the use of SNe Ia as cosmological standard candles.Comment: 12 pages + 8 figures, ApJ (in press, Dec. 20, 2004) For high resolution figures send E-mail to [email protected]
    corecore