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ABSTRACT

We present near-infrared spectra of late-phase (1200 days) Type Ia supernovae (SNe Ia) taken at the Subaru
Telescope. The [Feii] line of SN 2003hv shows a clear flat-topped feature, while that of SN 2005W shows a
less prominent flatness. In addition, a large shift in their line center, varying from�3000 to 1000 km s�1 with
respect to the host galaxies, is seen. Such a shift suggests the occurrence of an off-center, nonspherical explosion
in the central region and provides important, new constraints on the explosion models of SNe Ia.

Subject headings: infrared: stars — supernovae: general —
supernovae: individual (SN 2003du, SN 2003hv, SN 2005W)

1. INTRODUCTION AND SUMMARY

The brightness and approximate uniformity of Type Ia su-
pernovae (SNe Ia) enable us to use them as reliable and distant
standard candles, and they provide evidence of an accelerating
universe (Riess et al. 1998; Perlmutter et al. 1999). For pre-
cision cosmology, it is critical to understand the origin of di-
versity as well as the explosion mechanism of SNe Ia, which
is still open to debate (see, e.g., Hillebrandt & Niemeyer 2000
for a review). Possible sources of diversity include the asym-
metry of the explosion (Wang et al. 2003), due to the rotation
of the progenitor white dwarfs (Piersanti et al. 2003; Saio &
Nomoto 2004; Uenishi et al. 2003; Yoon & Langer 2003), and/
or the turbulent behavior of the deflagration flame (e.g., Ga-
mezo et al. 2003; Ro¨pke et al. 2006). Therefore, it is important
to observationally investigate the distribution of the synthesized
elements and the kinematical structure of the ejecta in order to
constrain the explosion models.

In this respect, late-phase (∼1 yr since the explosion) spec-
troscopy at the near-infrared (NIR) wavelength provides im-
portant diagnostics. Because the ejecta become optically thin
in late phases, spectroscopy provides an unbiased, direct view
of the innermost regions. Well-isolated [Feii] emission lines
at 1.257 and enable us to trace the distribution of1.644 mm
the most important isotopes synthesized in SNe Ia, i.e.,56Ni
(which decays into56Co and then56Fe) and other iron isotopes
such as54Fe. NIR observations of the Type Ia SN 1991T show
a strongly peaked [Feii] line that appears symmetric1.644mm
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with respect to the rest frame of the host galaxy (Spyromilio
et al. 1992; Bowers et al. 1997). The NIR [Feii] line profile
of SN 1998bu observed by Spyromilio et al. (2004) appears
to have a somewhat less centrally peaked emission profile.

This approach was highlighted by the discovery of a flat-
topped [Feii] emission line in SN 2003du (Ho¨flich1.644mm
et al. 2004). Such a line profile requires a central hole in the
kinematic distribution of the radioactive ejecta. This sort of
hollow radioactivity distribution is predicted in one-dimen-
sional (1D) explosion models (see, e.g., Nomoto et al. 1994
for a review), in which the innermost regions are burned under
high densities, , and electron capture produces9 �3r 1 10 g cm
stable isotopes of58Ni, 54Fe, and56Fe rather than radioactive
56Ni. However, such a distribution is contrary to the predictions
of state-of-the-art 3D deflagration simulations that predict
large-scale turbulent mixing in the inner layers; thus, these
simulations do not confine56Ni outside the central core. The
Höflich et al. (2004) NIR spectrum of SN 2003du also indicates
that the [Feii] 1.257 and emission lines show a1.644 mm
blueshift of 500–1000 km s�1 with respect to the host galaxy.

However, since the observed sample size of late-phase NIR
spectra is so small, it is not clear whether or not the flat-topped
and blueshifted lines are general properties of SNe Ia. Such
observations are extremely difficult because even relatively
nearby and bright SNe Ia are faint in NIR at late phases (e.g.,

for SN 2003du∼1 yr after the explosion). We there-H p 20–21
fore have conducted NIR observations of SNe Ia using the Su-
baru Telescope with an OH airglow suppressor (Table 1) and
obtained two more late-phase 1–2mm spectra of SN 2003hv and
SN 2005W.

A detailed explanation and discussion of the spectra will be
presented elsewhere (K. Motohara et al. 2006, in preparation).
We briefly report three interesting results in this Letter. (1) The
[Fe ii] lines of SN 2003hv also show a clear flat-topped feature.
(2) The [Feii] lines of SN 2005W show less prominent flatness.
(3) A large velocity shift of the line center, varying from�3000
to 1000 km s�1 with respect to the host galaxies, exists.

Considering the uniformity in optical bands around the peak
luminosity, the existence of such inhomogeneity and asym-
metry in SNe Ia is surprising and provides important, new
constraints on the explosion models.
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TABLE 1
Infrared Spectroscopy Observing Log

Name Host zhost

Obs. Date
(UT)

Epocha

(days)
ll
( )Å l/Dl

Exposure
(s)

Slit
(arcsec)

2003du. . . . . . UGC9391 0.006384 2004 Feb 27.5 �297.2 11080–18040 400 4000 0.5
2003hv. . . . . . NGC1201 0.005604 2004 Oct 06.5 �394 11080–18040 400 12000 0.5
2005W . . . . . . NGC 691 0.008889 2005 Sep 12.6 �214 11080–18040 400 4000 0.5

a Epochs are with respect to the epoch ofB-band maximum light ( ).t p 0Bmax

2. OBSERVATIONS

2.1. SN 2003du

SN 2003du was discovered by LOTOSS (Lick Observatory
and the Tenagra Observatory Supernova Searches) on 2003
April 22.4 in UGC 9391 at about 15.9 mag (Schwartz & Hol-
vorcem 2003). It was confirmed to be a SN Ia by Kotak et al.
(2003), who reported that the optical spectrum resembles that
of SN 2002bo about 2 weeks before maximum, and reached
maximum light in theB band ( days) on 2003 Mayt p 0Bmax

6.3 UT (JD ; Anupama et al. 2005).2,452,766.3� 0.5
As reported in Ho¨flich et al. (2004),JH-band spectroscopy

of SN 2003du was carried out using OHS/CISCO (OH-airglow
Suppressor/Cooled Infrared Spectrograph and Camera for
OHS; Iwamuro et al. 2001; Motohara et al. 2002) at the Subaru
Observatory. For this work, we re-reduced the data taken on
2004 February 27.5 (�297 days), which were processed in a
standard procedure of flat-fielding, sky subtraction, bad-pixel
correction, and residual sky subtraction. The flux was scaled
using theH-band photometry that was taken on 2003 April
2.5, assuming that the change in the brightness is negligible at
the late phase. The wavelength was calibrated using the stan-
dard pixel-wavelength relation of CISCO, of which the sys-
tematic error is estimated to be less than 0.5 pixels (!3 ).Å

2.2. SN 2003hv

SN 2003hv was discovered by LOTOSS on 2003 September
9.5 (UT) in NGC 1201 at about 12.5 mag (Beutler & Li 2003)
and confirmed to be a SN Ia by the spectrum taken on 2003
September 10.4, which resembles that of SN 1994D 2 days
after maximum (Dressler et al. 2003). We therefore assume
maximum light in theB band to be JD 2,452,891.

Our JH-band spectroscopy of SN 2003hv was carried out
using OHS/CISCO on 2004 October 6 (epoch�394 days). The
JH-band spectroscopy consists of six frames of 2000 s exposure
with an 0�.5 slit, providing a wavelength resolution of∼400.
The A2 star SAO 169939 was observed after the target to
correct the atmospheric and instrumental absorption pattern.
The data were reduced in the same manner as that of SN
2003du.

2.3. SN 2005W

SN 2005W was discovered on 2005 February 1.4 (UT) in
NGC 691 at about 15.2 mag (Nakano & Li 2005) and confirmed
to be a SN Ia about a week before maximum on 2005 February
2.7 (UT) (Elias-Rosa et al. 2005). The expansion velocity is
measured to be∼11,600 km s�1 from the Siii line. We assume
maximum light in theB band to be JD 2,453,413 (2005 Feb-
ruary 10).

Our JH-band spectroscopy of SN 2005W was carried out on
2005 September 12 (epoch�214 days) by OHS/CISCO. It
consists of four frames of 1000 s exposure with an 0�.5 slit.
The A2 star HIP 20091 was observed after the target to correct

the atmospheric and instrumental absorption pattern. The data
were reduced in the same manner as that of SN 2003du.

3. RESULTS

The NIR spectra are shown in Figure 1. It can be seen that
all the observed SNe Ia exhibit strong [Feii] 1.257 and

lines. We discovered two important features.1.644mm
First, the line center of [Feii], corrected for the redshift of

the host galaxies, is not identical for the three events. With
respect to the rest wavelength of the line ( ), two SNe1.644mm
Ia (2003du, 2003hv) show a blueshift, while the other (2005W)
shows a redshift. The corresponding velocity shifts relative to
the hosts’ rest frame are�2600,�2100, and�1400 km s�1

for SNe 2003hv, 2003du, and 2005W, respectively.
Such a velocity shift is confirmed by a mid-infrared (MIR)

spectrum of SN 2003hv taken by the Infrared Spectrograph
(IRS) on theSpitzer Space Telescope ∼�360 days after max-
imum brightness (Fig. 2; L. Gerardy et al. 2006, in prepa-
ration). One of the strongest emission features is identified
as the ground-state fine-structure line of [Coiii] at 11.89mm
(a4F9/2–a4F7/2). The well-isolated [Coiii] line also shows a
velocity shift that is consistent with that seen in the NIR
[Fe ii] 1.644 mm line, to within the noise level of the MIR
feature.

Second, we find that the observed [Feii] lines show a large
variety in their shape (Fig. 1). The spectrum of SN 2003hv
clearly shows a flat-topped boxy profile like that seen at a much
lower signal-to-noise ratio (S/N) in SN 2003du. Indeed, the
higher S/N of the SN 2003hv spectrum places a much stronger
constraint on the flatness of the core of the [Feii] line. In
contrast, the [Feii] line profile of SN 2005W shows no evidence
of a central flat top.

The boxy profile of [Feii] lines seen in SN 2003du and SN
2003hv suggests the absence of radioactive56Ni below ∼3000
km s�1 (measured from the center of the56Ni distribution). We
note that the observed epoch of SN 2003hv is more advanced
than SN 2003du. At a later epoch, the line profile should follow
the56Ni distribution more closely (§ 4). Effects of possible line
deformation due to electron and line scatterings will also ef-
fectively vanish. The present result of SN 2003hv confirms the
existence of the56Ni empty hole more strongly than that of SN
2003du.

4. DISCUSSION

In this section we discuss the impact of our findings for
understanding the explosion mechanism. It is widely agreed
that the explosion of a SN Ia starts from a deflagration (Nomoto
et al. 1976). In the spherical deflagration models, electron cap-
ture leads to the synthesis of58Ni, 54Fe, and56Fe (not via56Ni
decay), thus creating an almost56Ni empty hole (e.g., Nomoto
et al. 1984). In multidimensional models, the ignition of the
deflagration may be off-center, producing a nonspherical burn-
ing region (Wunsch & Woosley 2004; Plewa et al. 2004). In
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Fig. 1.—NIR 1–2mm spectra of late-phase SNe Ia, converted to the rest wavelength at the host galaxies. All the spectra are smoothed with a 3 pixel boxcar
filter. The vertical dashed lines show the position of [Feii] 1.257 and lines.1.644mm

Fig. 2.—[Fe ii] (top) and [Co iii] (bottom) emission1.644 mm 11.89mm
lines of SN 2003hv (solid histograms). Overlapping the [Feii] line is the 1D
explosion model W7 400 days after the explosion (dotted line). The model
flux is arbitrarily scaled to fit the observed flux as well as shifted to the blue
by 2600 km s�1.

some cases, the deflagration to detonation transition (DDT) may
occur (delayed detonation models; Khokhlov 1991). The DDT
may also take place nonspherically (Livne 1999), even if the
deflagration does not have a bulk kinematical offset.

The flat-topped [Feii] NIR lines in SNe 2003hv and
2003du indicate that the highest density region occupied by

neutron-rich Fe-peak isotopes is not mixed with the sur-
rounding region where the dominant isotope is56Ni (Höflich
et al. 2004). Figure 2 shows a spectrum for the spherical
deflagration explosion model W7 (Nomoto et al. 1984) 400
days after the explosion, compared with that of SN 2003hv.
This is calculated by solving the transport ofg-rays pro-
duced in the decay chain56Ni r 56Co r 56Fe and by itera-
tively solving non-LTE rate equations (Mazzali et al. 2001;
Maeda et al. 2006). Positrons produced by the56Co-decay
are assumed to be trapped on the spot, since the mean free
path of positrons is expected to be small at this epoch (Milne
et al. 2001).

The model shows that the flat-topped profile is consistent
with the [Fe ii] emission for the reason described1.644 mm
above. The asymmetry in the profile, mildly peaking in the
red, is due to the weak contributions of [Feii] 1.664 and

.1.677mm
The shift of [Feii] lines suggests that the distribution of56Ni

(which decays to56Fe via 56Co) produced at the explosion is
asymmetric, showing a bulk kinematical offset of�2000 km
s�1 with respect to the SN rest frame. This suggests that, unlike
the spherical models, the carbon ignition may take place off-
center. The flat-topped [Feii] line profiles suggest that electron
capture in the high-density off-center deflagration region cre-
ates the neutron-rich hole as in 1D models, at least in SNe
2003du and 2003hv. The neutron-rich hole is offset along with
the bulk56Ni distribution. This indicates that the highest density
burning in these SNe took place quite far away from the center
of the progenitor star.

The blueshifted and flat-topped profile of [Feii] can also be
reproduced by a symmetric and opaque dusty core, like [Oi]
ll6300, 6364 observed in a late-phase Type II SN (Elmhamdi
et al. 2003). If this is the case in the present results, the MIR
[Co iii] line, which will be far less affected by dust extinction,
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may show a much smaller blueshift than NIR [Feii]. However,
the [Co iii] line shows almost the same blueshift as [Feii]
(Fig. 2). Therefore, it is unlikely that the flat-topped profile is
caused by the opaque dust core.

Adding the result of SN 1991T (Spyromilio et al. 1992;
Bowers et al. 1997), two SNe (SN 2003du, SN 2003hv) out
of four SNe Ia show the boxy [Feii] profile (Fig. 1), while
SN 1991T and SN 2005W do not. This could indicate that the
distribution of 56Ni in the innermost region of the SN Ia ex-
plosion might differ from object to object. SNe Ia with a non-
boxy line profile might experience more mixing than those with
a boxy profile (e.g., SN 2003hv) in the innermost region. An-
other possibility is that the density of the progenitor, where the
ignition takes place, differs from object to object, and a SN Ia
with the peaked [Feii] explodes at a low density so as not to
produce electron-capture isotopes.

Alternatively, the different line shape could be due to an age
effect, i.e., due to a variation in the extent to which the energy
deposition from the radioactivity is kept local. At earlier ep-
ochs,g-rays are the dominant heating source. Since theg-ray
penetration is not a local process, the innermost region, even
without 56Ni, can be heated effectively. At later epochs, the
contribution from the local positron energy input becomes
larger, and the line profile should follow the56Ni distribution
more closely. Therefore, we expect that the line shape could
evolve from a peaked to a flat-topped profile. This may partially

explain the fact that the most aged SN Ia (2003hv) shows the
clean flat-topped boxy [Feii] line. Indeed, this provides an
observational test of our model.

We suggest a future test to estimate the age effect and to
confirm our interpretation of the56Ni: a temporal series of NIR
nebular spectra for an individual SN Ia. The shape of an [Feii]
line is expected to start getting flat at∼250 days and may become
totally flat at∼500 days. Thereafter, it may start showing a peaked
profile at∼1000 days again, depending on the amount of pos-
itrons that can escape the ejecta (Milne et al. 2001). Also, spectra
at different wavelengths from optical to the MIR will be useful
for investigating the distribution of different ions and heating
radioactive isotopes (e.g., Fig. 2). Because the line profiles from
different ions and from different energy levels are dependent on
the ionization and thermal structure of the ejecta, further detailed
theoretical study is necessary to make use of these observations
efficiently.
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