53 research outputs found

    Surgical Treatment of a Giant Liposarcoma in a Japanese Man

    Get PDF
    We report a case of a rapidly progressing giant retroperitoneal liposarcoma weighing 22 kg in a 41-year-old Japanese man, successfully treated with surgical excision. To our knowledge, this is the largest liposarcoma in the Japanese population reported in the literature

    Visible light-driven dye-sensitized photocatalytic hydrogen production by porphyrin and its cyclic dimer and trimer: effect of multi-pyridyl-anchoring groups on photocatalytic activity and stability

    Get PDF
    The monomer, dimer, and trimer of 5,15-diphenyl-10,20-di(pyridin-4-yl)porphyrin are used to investigate the multianchoring effect on TiO2 for visible light-driven photocatalytic hydrogen production in a water medium. Further, the porphyrin trimer is prepared and analyzed by nuclear magnetic resonance (NMR) spectroscopy, absorption spectroscopy, electrochemical voltammetry, fast atom bombardment (FAB) mass spectroscopy, and density functional theory (DFT) computation. The results of this study indicate that the peak intensities of the absorption spectra increase as the number of porphyrin units increases, while changes could be barely observed in the highest occupied molecular orbital (HOMO)–lowest unoccupied molecular orbital (LUMO) gaps. The porphyrin dimer in a 1 wt % Pt-loaded TiO2 powder photocatalyst system exhibited optimal hydrogen production performance in a stable state over a period of 80 h and at a superior rate of 1023 μmol·g–1·h–1. Further, the stability of the photocatalytic system was systematically investigated using films containing dyes on 1 wt % Pt-loaded TiO2/FTO. For a film containing the dimer, almost no change was observed in the hydrogen-bond coordination mode of the dimer and the photocurrent during the photocatalytic reaction. However, the photocurrents of the monomer and trimer were altered during visible light irradiation without altering the coordination mode, indicating that the arrangements and orientations of the porphyrins on TiO2 surfaces were altered. These results indicate that the presence of multiple anchoring groups enhance the stability of the photocatalytic system and the rate of hydrogen production

    A Point Mutation of Tyr-759 in Interleukin 6 Family Cytokine Receptor Subunit gp130 Causes Autoimmune Arthritis

    Get PDF
    We generated a mouse line in which the src homology 2 domain–bearing protein tyrosine phosphatase (SHP)-2 binding site of gp130, tyrosine 759, was mutated to phenylalanine (gp130F759/F759). The gp130F759/F759 mice developed rheumatoid arthritis (RA)-like joint disease. The disease was accompanied by autoantibody production and accumulated memory/activated T cells and myeloid cells. Before the disease onset, the T cells were hyperresponsive and thymic selection and peripheral clonal deletion were impaired. The inhibitory effect of IL-6 on Fas ligand expression during activation-induced cell death (AICD) was augmented in gp130F759/F759 T cells in a manner dependent on the tyrosine residues of gp130 required for signal transducer and activator of transcription 3 activation. Finally, we showed that disease development was dependent on lymphocytes. These results provide evidence that a point mutation of a cytokine receptor has the potential to induce autoimmune disease

    Spike Code Flow in Cultured Neuronal Networks

    Get PDF
    We observed spike trains produced by one-shot electrical stimulation with 8 × 8 multielectrodes in cultured neuronal networks. Each electrode accepted spikes from several neurons. We extracted the short codes from spike trains and obtained a code spectrum with a nominal time accuracy of 1%. We then constructed code flow maps as movies of the electrode array to observe the code flow of “1101” and “1011,” which are typical pseudorandom sequence such as that we often encountered in a literature and our experiments. They seemed to flow from one electrode to the neighboring one and maintained their shape to some extent. To quantify the flow, we calculated the “maximum cross-correlations” among neighboring electrodes, to find the direction of maximum flow of the codes with lengths less than 8. Normalized maximum cross-correlations were almost constant irrespective of code. Furthermore, if the spike trains were shuffled in interval orders or in electrodes, they became significantly small. Thus, the analysis suggested that local codes of approximately constant shape propagated and conveyed information across the network. Hence, the codes can serve as visible and trackable marks of propagating spike waves as well as evaluating information flow in the neuronal network

    Efficacy of SMART Stent Placement for Salvage Angioplasty in Hemodialysis Patients with Recurrent Vascular Access Stenosis

    Get PDF
    Vascular access stenosis is a major complication in hemodialysis patients. We prospectively observed 50 patients in whom 50 nitinol shape-memory alloy-recoverable technology (SMART) stents were used as salvage therapy for recurrent peripheral venous stenosis. Twenty-five stents each were deployed in native arteriovenous fistula (AVF) and synthetic arteriovenous polyurethane graft (AVG) cases. Vascular access patency rates were calculated by Kaplan-Meier analysis. The primary patency rates in AVF versus AVG at 3, 6, and 12 months were 80.3% versus 75.6%, 64.9% versus 28.3%, and 32.3% versus 18.9%, respectively. The secondary patency rates in AVF versus AVG at 3, 6, and 12 months were 88.5% versus 75.5%, 82.6% versus 61.8%, and 74.4% versus 61.8%, respectively. Although there were no statistically significant difference in patency between AVF and AVG, AVG showed poor tendency in primary and secondary patency. The usefulness of SMART stents was limited in a short period of time in hemodialysis patients with recurrent vascular access stenosis
    corecore