17 research outputs found

    RLR-mediated antiviral innate immunity requires oxidative phosphorylation activity

    Get PDF
    Mitochondria act as a platform for antiviral innate immunity, and the immune system depends on activation of the retinoic acid-inducible gene I (RIG-I)-like receptors (RLR) signaling pathway via an adaptor molecule, mitochondrial antiviral signaling. We report that RLR-mediated antiviral innate immunity requires oxidative phosphorylation (OXPHOS) activity, a prominent physiologic function of mitochondria. Cells lacking mitochondrial DNA or mutant cells with respiratory defects exhibited severely impaired virus-induced induction of interferons and proinflammatory cytokines. Recovery of the OXPHOS activity in these mutants, however, re-established RLR-mediated signal transduction. Using in vivo approaches, we found that mice with OXPHOS defects were highly susceptible to viral infection and exhibited significant lung inflammation. Studies to elucidate the molecular mechanism of OXPHOS-coupled immune activity revealed that optic atrophy 1, a mediator of mitochondrial fusion, contributes to regulate the antiviral immune response. Our findings provide evidence for functional coordination between RLR-mediated antiviral innate immunity and the mitochondrial energy-generating system in mammals

    Cervico-shoulder dystonia following lateral medullary infarction: a case report and review of the literature

    No full text
    Abstract Background Secondary cervical dystonia is induced by organic brain lesions involving the basal ganglia, thalamus, cerebellum, and brain stem. It is extremely rare to see cervical dystonia induced by a medullary lesion. Case presentation We report a case of an 86-year-old Japanese woman who developed cervical dystonia following lateral medullary infarction. She developed sudden-onset left upper and lower extremity weakness, right-side numbness, and dysarthria. Brain magnetic resonance imaging revealed an acute ischemic lesion involving the left lateral and dorsal medullae. A few days after her stroke, she complained of a taut sensation in her left neck and body, and cervico-shoulder dystonia toward the contralateral side subsequently appeared. Within a few weeks, it disappeared spontaneously, but her hemiplegia remained residual. Conclusions To date, to the best of our knowledge, there has been only one reported case of cervical dystonia associated with a single medullary lesion. It is interesting to note the similarities in the clinical characteristics of the previously reported case and our patient: the involvement of the dorsal and caudal parts of the medullary and associated ipsilateral hemiplegia. The present case may support the speculation that the lateral and caudal regions of the medulla may be the anatomical sites responsible for inducing cervical dystonia

    RLR-mediated antiviral innate immunity requires oxidative phosphorylation activity

    Get PDF
    Mitochondria act as a platform for antiviral innate immunity, and the immune system depends on activation of the retinoic acid-inducible gene I (RIG-I)-like receptors (RLR) signaling pathway via an adaptor molecule, mitochondrial antiviral signaling. We report that RLR-mediated antiviral innate immunity requires oxidative phosphorylation (OXPHOS) activity, a prominent physiologic function of mitochondria. Cells lacking mitochondrial DNA or mutant cells with respiratory defects exhibited severely impaired virus-induced induction of interferons and proinflammatory cytokines. Recovery of the OXPHOS activity in these mutants, however, re-established RLR-mediated signal transduction. Using in vivo approaches, we found that mice with OXPHOS defects were highly susceptible to viral infection and exhibited significant lung inflammation. Studies to elucidate the molecular mechanism of OXPHOS-coupled immune activity revealed that optic atrophy 1, a mediator of mitochondrial fusion, contributes to regulate the antiviral immune response. Our findings provide evidence for functional coordination between RLR-mediated antiviral innate immunity and the mitochondrial energy-generating system in mammals

    Deep cerebral venous thrombosis mimicking influenza-associated acute necrotizing encephalopathy: a case report

    No full text
    Abstract Background Acute necrotizing encephalopathy is one of the most devastating neurological complications of influenza virus infection. Acute necrotizing encephalopathy preferentially affects the thalamus bilaterally, as does deep cerebral venous thrombosis, which can lead to misdiagnosis. Case presentation A 52-year-old Japanese woman infected with seasonal influenza B virus presented to the emergency care unit in our hospital with progressive alteration of her level of consciousness. Bilateral thalamic lesions were demonstrated by magnetic resonance imaging, leading to a tentative diagnosis of acute necrotizing encephalopathy. However, she had deep cerebral venous thrombosis, and the presence of diminished signal and enlargement of deep cerebral veins on T2*-weighted imaging contributed to a revised diagnosis of deep cerebral venous thrombosis. Anticoagulant therapy was initiated, leading to her gradual recovery, with recanalization of the deep venous system and straight sinus. Conclusions To the best of our knowledge, these results represent the first report of deep cerebral venous thrombosis associated with influenza infection. It is clinically important to recognize that deep cerebral venous thrombosis, although rare, might be one of the neurological complications of influenza infection. In the presence of bilateral thalamic lesions in patients with influenza infection, deep cerebral venous thrombosis should be considered in addition to acute necrotizing encephalopathy. Delays in diagnosis and commencement of anticoagulant therapy can lead to unfavorable outcomes

    Relationship between attributes of individual workers and concentration at work

    No full text
    Working environments are becoming far more diverse. For example, Activity-Based Working (ABW), a new style of working where workers choose their own work environment, is now attracting attention. An office that introduces ABW is comprised of various spaces, including open plan workspaces, corresponding to the ways of working. However, such an office may result in distraction. Therefore, it is necessary to identify the environmental factors that affect individual workers’ concentration at work. This study aimed to ascertain the relationship between individual workers’ attributes, such as the Big Five personality traits, personal control, and age, and the factors that distract them from their work. A questionnaire-based field survey was conducted at an office that partially adopted ABW to investigate the relationship between selection of seats and concentration at work. The results revealed different tendencies among workers for the type of work environment needed to concentrate according to their individual attributes. Additionally, it was suggested that the changing of seats lead to improved concentration at work, thus increasing productivity

    Characterization of Influenza A(H1N1)pdm09 Viruses Isolated in the 2018–2019 and 2019–2020 Influenza Seasons in Japan

    No full text
    The influenza A(H1N1)pdm09 virus that emerged in 2009 causes seasonal epidemic worldwide. The virus acquired several amino acid substitutions that were responsible for antigenic drift until the 2018–2019 influenza season. Viruses possessing mutations in the NA and PA proteins that cause reduced susceptibility to NA inhibitors and baloxavir marboxil, respectively, have been detected after antiviral treatment, albeit infrequently. Here, we analyzed HA, NA, and PA sequences derived from A(H1N1)pdm09 viruses that were isolated during the 2018–2019 and 2019–2020 influenza seasons in Japan. We found that A(H1N1)pdm09 viruses possessing the D187A and Q189E substitutions in HA emerged and dominated during the 2019–2020 season; these substitutions in the antigenic site Sb, a high potency neutralizing antibody-eliciting site for humans, changed the antigenicity of A(H1N1)pdm09 viruses. Furthermore, we found that isolates possessing the N156K substitution, which was predicted to affect the antigenicity of A(H1N1)pdm09 virus at the laboratory level, were detected at a frequency of 1.0% in the 2018–2019 season but 10.1% in the 2019–2020 season. These findings indicate that two kinds of antigenically drifted viruses—N156K and D187A/Q189E viruses—co-circulated during the 2019–2020 influenza season in Japan

    Molecular Basis for E-cadherin Recognition by Killer Cell Lectin-like Receptor G1 (KLRG1)*

    No full text
    The killer cell lectin-like receptor G1, KLRG1, is a cell surface receptor expressed on subsets of natural killer (NK) cells and T cells. KLRG1 was recently found to recognize E-cadherin and thus inhibit immune responses by regulating the effector function and the developmental processes of NK and T cells. E-cadherin is expressed on epithelial cells and exhibits Ca2+-dependent homophilic interactions that contribute to cell-cell junctions. However, the mechanism underlying the molecular recognition of KLRG1 by E-cadherin remains unclear. Here, we report structural, binding, and functional analyses of this interaction using multiple methods. Surface plasmon resonance demonstrated that KLRG1 binds the E-cadherin N-terminal domains 1 and 2 with low affinity (Kd ∼7–12 μm), typical of cell-cell recognition receptors. NMR binding studies showed that only a limited N-terminal region of E-cadherin, comprising the homodimer interface, exhibited spectrum perturbation upon KLRG1 complex formation. It was confirmed by binding studies using a series of E-cadherin mutants. Furthermore, killing assays using KLRG1+NK cells and reporter cell assays demonstrated the functional significance of the N-terminal region of E-cadherin. These results suggest that KLRG1 recognizes the N-terminal homodimeric interface of domain 1 of E-cadherin and binds only the monomeric form of E-cadherin to inhibit the immune response. This raises the possibility that KLRG1 detects monomeric E-cadherin at exposed cell surfaces to control the activation threshold of NK and T cells
    corecore