1,260 research outputs found

    Classical Nonrelativistic Effective Field Theory and the Role of Gravitational Interactions

    Get PDF
    Coherent oscillation of axions or axion-like particles may give rise to long-lived clumps, called axion stars, because of the attractive gravitational force or its self-interaction. Such a kind of configuration has been extensively studied in the context of oscillons without the effect of gravity, and its stability can be understood by an approximate conservation of particle number in a non-relativistic effective field theory (EFT). We extend this analysis to the case with gravity to discuss the longevity of axion stars and clarify the EFT expansion scheme in terms of gradient energy and Newton's constant. Our EFT is useful to calculate the axion star configuration and its classical lifetime without any ad hoc assumption. In addition, we derive a simple stability condition against small perturbations. Finally, we discuss the consistency of other non-relativistic effective field theories proposed in the literature.Comment: 37 pages, 3 figure

    Strong-coupling theory of superconductivity in a degenerate Hubbard model

    Full text link
    In order to discuss superconductivity in orbital degenerate systems, a microscopic Hamiltonian is introduced. Based on the degenerate model, a strong-coupling theory of superconductivity is developed within the fluctuation exchange (FLEX) approximation where spin and orbital fluctuations, spectra of electron, and superconducting gap function are self-consistently determined. Applying the FLEX approximation to the orbital degenerate model, it is shown that the dx2−y2d_{x^2-y^2}-wave superconducting phase is induced by increasing the orbital splitting energy which leads to the development and suppression of the spin and orbital fluctuations, respectively. It is proposed that the orbital splitting energy is a controlling parameter changing from the paramagnetic to the antiferromagnetic phase with the dx2−y2d_{x^2-y^2}-wave superconducting phase in between.Comment: 4 figures, submitted to PR

    Spin Fluctuation Induced Superconductivity Controlled by Orbital Fluctuation

    Full text link
    A microscopic Hamiltonian reflecting the correct symmetry of ff-orbitals is proposed to discuss superconductivity in heavy fermion systems. In the orbitally degenerate region in which not only spin fluctuations but also orbital fluctuations develop considerably, cancellation between spin and orbital fluctuations destabilizes dx2−y2d_{x^{2}-y^{2}}-wave superconductivity. Entering the non-degenerate region by increasing the crystalline electric field, dx2−y2d_{x^{2}-y^{2}}-wave superconductivity mediated by antiferromagnetic spin fluctuations emerges out of the suppression of orbital fluctuations. We argue that the present scenario can be applied to recently discovered superconductors CeTIn5_{5} (T=Ir, Rh, and Co).Comment: 4 pages, 3 figure

    Laplace's rule of succession in information geometry

    Full text link
    Laplace's "add-one" rule of succession modifies the observed frequencies in a sequence of heads and tails by adding one to the observed counts. This improves prediction by avoiding zero probabilities and corresponds to a uniform Bayesian prior on the parameter. The canonical Jeffreys prior corresponds to the "add-one-half" rule. We prove that, for exponential families of distributions, such Bayesian predictors can be approximated by taking the average of the maximum likelihood predictor and the \emph{sequential normalized maximum likelihood} predictor from information theory. Thus in this case it is possible to approximate Bayesian predictors without the cost of integrating or sampling in parameter space

    Multipole correlations in low-dimensional f-electron systems

    Full text link
    By using a density matrix renormalization group method, we investigate the ground-state properties of a one-dimensional three-orbital Hubbard model on the basis of a j-j coupling scheme. For B40≠0B_4^0 \ne 0, where B40B_4^0 is a parameter to control cubic crystalline electric field effect, one orbital is itinerant, while other two are localized. Due to the competition between itinerant and localized natures, we obtain orbital ordering pattern which is sensitive to B40B_4^0, leading to a characteristic change of Γ3g\Gamma_{3g} quadrupole state into an incommensurate structure. At B40=0B_4^0 = 0, all the three orbitals are degenerate, but we observe a peak at q=0q = 0 in Γ3g\Gamma_{3g} quadrupole correlation, indicating a ferro-orbital state, and the peak at q=πq = \pi in Γ4u\Gamma_{4u} dipole correlation, suggesting an antiferromagnetic state. We also discuss the effect of Γ4u\Gamma_{4u} octupole on magnetic anisotropy.Comment: 4 pages, 3 figures, Proceedings of ASR-WYP-2005 (September 27-29, 2005, Tokai

    Adaptive Regret Minimization in Bounded-Memory Games

    Get PDF
    Online learning algorithms that minimize regret provide strong guarantees in situations that involve repeatedly making decisions in an uncertain environment, e.g. a driver deciding what route to drive to work every day. While regret minimization has been extensively studied in repeated games, we study regret minimization for a richer class of games called bounded memory games. In each round of a two-player bounded memory-m game, both players simultaneously play an action, observe an outcome and receive a reward. The reward may depend on the last m outcomes as well as the actions of the players in the current round. The standard notion of regret for repeated games is no longer suitable because actions and rewards can depend on the history of play. To account for this generality, we introduce the notion of k-adaptive regret, which compares the reward obtained by playing actions prescribed by the algorithm against a hypothetical k-adaptive adversary with the reward obtained by the best expert in hindsight against the same adversary. Roughly, a hypothetical k-adaptive adversary adapts her strategy to the defender's actions exactly as the real adversary would within each window of k rounds. Our definition is parametrized by a set of experts, which can include both fixed and adaptive defender strategies. We investigate the inherent complexity of and design algorithms for adaptive regret minimization in bounded memory games of perfect and imperfect information. We prove a hardness result showing that, with imperfect information, any k-adaptive regret minimizing algorithm (with fixed strategies as experts) must be inefficient unless NP=RP even when playing against an oblivious adversary. In contrast, for bounded memory games of perfect and imperfect information we present approximate 0-adaptive regret minimization algorithms against an oblivious adversary running in time n^{O(1)}.Comment: Full Version. GameSec 2013 (Invited Paper

    Double-Exchange Ferromagnetism and Orbital-Fluctuation-Induced Superconductivity in Cubic Uranium Compounds

    Full text link
    A double-exchange mechanism for the emergence of ferromagnetism in cubic uranium compounds is proposed on the basis of a jj-jj coupling scheme. The idea is {\it orbital-dependent duality} of 5f5f electrons concerning itinerant Γ8−\Gamma_8^- and localized Γ7−\Gamma_7^- states in the cubic structure. Since orbital degree of freedom is still active in the ferromagnetic phase, orbital-related quantum critical phenomenon is expected to appear. In fact, odd-parity p-wave pairing compatible with ferromagnetism is found in the vicinity of an orbital ordered phase. Furthermore, even-parity d-wave pairing with significant odd-frequency components is obtained. A possibility to observe such exotic superconductivity in manganites is also discussed briefly.Comment: 4 pages, 4 figures. To appear in J. Phys. Soc. Jp

    Quasiparticle Interactions for f2^2-Impurity Anderson Model with Crystalline-Electric-Field: Numerical Renormalization Group Study

    Full text link
    The aspect of the quasiparticle interaction of a local Fermi liquid, the impurity version of f2^2-based heavy fermions, is studied by the Wilson numerical renormalization group method. In particular, the case of the f2^2-singlet crystalline-electric-field ground state is investigated assuming the case of UPt3_3 with the hexagonal symmetry. It is found that the interorbital interaction becomes larger than the intraorbital one in contrast to the case of the bare Coulomb interaction for the parameters relevant to UPt3_3. This result offers us a basis to construct a microscopic theory of the superconductivity of UPt3_3 where the interorbital interactions are expected to play important roles.Comment: 9 pages, 5 figure

    Effective Crystalline Electric Field Potential in a j-j Coupling Scheme

    Full text link
    We propose an effective model on the basis of a jj-jj coupling scheme to describe local ff-electron states for realistic values of Coulomb interaction UU and spin-orbit coupling λ\lambda, for future development of microscopic theory of magnetism and superconductivity in fnf^n-electron systems, where nn is the number of local ff electrons. The effective model is systematically constructed by including the effect of a crystalline electric field (CEF) potential in the perturbation expansion in terms of 1/λ1/\lambda. In this paper, we collect all the terms up to the first order of 1/λ1/\lambda. Solving the effective model, we show the results of the CEF states for each case of nn=2∌\sim5 with OhO_{\rm h} symmetry in comparison with those of the Stevens Hamiltonian for the weak CEF. In particular, we carefully discuss the CEF energy levels in an intermediate coupling region with λ/U\lambda/U in the order of 0.1 corresponding to actual ff-electron materials between the LSLS and jj-jj coupling schemes. Note that the relevant energy scale of UU is the Hund's rule interaction. It is found that the CEF energy levels in the intermediate coupling region can be quantitatively reproduced by our modified jj-jj coupling scheme, when we correctly take into account the corrections in the order of 1/λ1/\lambda in addition to the CEF terms and Coulomb interactions which remain in the limit of λ\lambda=∞\infty. As an application of the modified jj-jj coupling scheme, we discuss the CEF energy levels of filled skutterudites with ThT_{\rm h} symmetry.Comment: 12 pages, 7 figures. Typeset with jpsj2.cl
    • 

    corecore