888 research outputs found
Laplace's rule of succession in information geometry
Laplace's "add-one" rule of succession modifies the observed frequencies in a
sequence of heads and tails by adding one to the observed counts. This improves
prediction by avoiding zero probabilities and corresponds to a uniform Bayesian
prior on the parameter. The canonical Jeffreys prior corresponds to the
"add-one-half" rule. We prove that, for exponential families of distributions,
such Bayesian predictors can be approximated by taking the average of the
maximum likelihood predictor and the \emph{sequential normalized maximum
likelihood} predictor from information theory. Thus in this case it is possible
to approximate Bayesian predictors without the cost of integrating or sampling
in parameter space
An efficient algorithm for learning with semi-bandit feedback
We consider the problem of online combinatorial optimization under
semi-bandit feedback. The goal of the learner is to sequentially select its
actions from a combinatorial decision set so as to minimize its cumulative
loss. We propose a learning algorithm for this problem based on combining the
Follow-the-Perturbed-Leader (FPL) prediction method with a novel loss
estimation procedure called Geometric Resampling (GR). Contrary to previous
solutions, the resulting algorithm can be efficiently implemented for any
decision set where efficient offline combinatorial optimization is possible at
all. Assuming that the elements of the decision set can be described with
d-dimensional binary vectors with at most m non-zero entries, we show that the
expected regret of our algorithm after T rounds is O(m sqrt(dT log d)). As a
side result, we also improve the best known regret bounds for FPL in the full
information setting to O(m^(3/2) sqrt(T log d)), gaining a factor of sqrt(d/m)
over previous bounds for this algorithm.Comment: submitted to ALT 201
Application of compressed sensing to the simulation of atomic systems
Compressed sensing is a method that allows a significant reduction in the
number of samples required for accurate measurements in many applications in
experimental sciences and engineering. In this work, we show that compressed
sensing can also be used to speed up numerical simulations. We apply compressed
sensing to extract information from the real-time simulation of atomic and
molecular systems, including electronic and nuclear dynamics. We find that for
the calculation of vibrational and optical spectra the total propagation time,
and hence the computational cost, can be reduced by approximately a factor of
five.Comment: 7 pages, 5 figure
Quasiparticle Interactions for f-Impurity Anderson Model with Crystalline-Electric-Field: Numerical Renormalization Group Study
The aspect of the quasiparticle interaction of a local Fermi liquid, the
impurity version of f-based heavy fermions, is studied by the Wilson
numerical renormalization group method. In particular, the case of the
f-singlet crystalline-electric-field ground state is investigated assuming
the case of UPt with the hexagonal symmetry. It is found that the
interorbital interaction becomes larger than the intraorbital one in contrast
to the case of the bare Coulomb interaction for the parameters relevant to
UPt. This result offers us a basis to construct a microscopic theory of the
superconductivity of UPt where the interorbital interactions are expected
to play important roles.Comment: 9 pages, 5 figure
Two problems related to prescribed curvature measures
Existence of convex body with prescribed generalized curvature measures is
discussed, this result is obtained by making use of Guan-Li-Li's innovative
techniques. In surprise, that methods has also brought us to promote
Ivochkina's estimates for prescribed curvature equation in \cite{I1, I}.Comment: 12 pages, Corrected typo
Double-Exchange Ferromagnetism and Orbital-Fluctuation-Induced Superconductivity in Cubic Uranium Compounds
A double-exchange mechanism for the emergence of ferromagnetism in cubic
uranium compounds is proposed on the basis of a - coupling scheme. The
idea is {\it orbital-dependent duality} of electrons concerning itinerant
and localized states in the cubic structure. Since
orbital degree of freedom is still active in the ferromagnetic phase,
orbital-related quantum critical phenomenon is expected to appear. In fact,
odd-parity p-wave pairing compatible with ferromagnetism is found in the
vicinity of an orbital ordered phase. Furthermore, even-parity d-wave pairing
with significant odd-frequency components is obtained. A possibility to observe
such exotic superconductivity in manganites is also discussed briefly.Comment: 4 pages, 4 figures. To appear in J. Phys. Soc. Jp
Phase Diagram of Superconductivity on the Anisotropic Triangular Lattice Hubbard Model
We study the electronic states of the anisotropic triangular lattice Hubbard
model at half filling, which is a simple effective model for the organic
superconducting -BEDT-TTF compounds. We treat the effect of the Coulomb
interaction by the fluctuation exchange (FLEX) method, and obtain the phase
diagram of this model for various sets of parameters. It is shown that the
d-wave superconductivity is realized in the wide region of the phase diagram,
next to the antiferromagnetic states. The obtained phase diagram explains the
characters of the experimental results very well.Comment: 4 pages, 6 figs, submitted for publicatio
Markov Chain-based Promoter Structure Modeling for Tissue-specific Expression Pattern Prediction
Transcriptional regulation is the first level of regulation of gene expression and is therefore a major topic in computational biology. Genes with similar expression patterns can be assumed to be co-regulated at the transcriptional level by promoter sequences with a similar structure. Current approaches for modeling shared regulatory features tend to focus mainly on clustering of cis-regulatory sites. Here we introduce a Markov chain-based promoter structure model that uses both shared motifs and shared features from an input set of promoter sequences to predict candidate genes with similar expression. The model uses positional preference, order, and orientation of motifs. The trained model is used to score a genomic set of promoter sequences: high-scoring promoters are assumed to have a structure similar to the input sequences and are thus expected to drive similar expression patterns. We applied our model on two datasets in Caenorhabditis elegans and in Ciona intestinalis. Both computational and experimental verifications indicate that this model is capable of predicting candidate promoters driving similar expression patterns as the input-regulatory sequences. This model can be useful for finding promising candidate genes for wet-lab experiments and for increasing our understanding of transcriptional regulation
Orbital Order, Structural Transition and Superconductivity in Iron Pnictides
We investigate the 16-band d-p model for iron pnictide superconductors in the
presence of the electron-phonon coupling g with the orthorhombic mode which is
crucial for reproducing the recently observed ultrasonic softening. Within the
RPA, we obtain the ferro-orbital order below TQ which induces the
tetragonal-orthorhombic structural transition at Ts = TQ, together with the
stripe-type antiferromagnetic order below TN. Near the phase transitions, the
system shows the s++ wave superconductivity due to the orbital fluctuation for
a large g case with TQ > TN, while the s+- wave due to the magnetic fluctuation
for a small g case with TQ < TN. The former case is consistent with the phase
diagram of doped iron pnictides with Ts > TN.Comment: 5 pages, 5 figures, minor changes, published in J. Phys. Soc. Jp
Microscopic Approach to Magnetism and Superconductivity of -Electron Systems with Filled Skutterudite Structure
In order to gain a deep insight into -electron properties of filled
skutterudite compounds from a microscopic viewpoint, we investigate the
multiorbital Anderson model including Coulomb interactions, spin-orbit
coupling, and crystalline electric field effect. For each case of
=113, where is the number of electrons per rare-earth ion, the
model is analyzed by using the numerical renormalization group (NRG) method to
evaluate magnetic susceptibility and entropy of electron. In order to make
further step to construct a simplified model which can be treated even in a
periodic system, we also analyze the Anderson model constructed based on the
- coupling scheme by using the NRG method. Then, we construct an orbital
degenerate Hubbard model based on the - coupling scheme to investigate
the mechanism of superconductivity of filled skutterudites. In the 2-site
model, we carefully evaluate the superconducting pair susceptibility for the
case of =2 and find that the susceptibility for off-site Cooper pair is
clearly enhanced only in a transition region in which the singlet and triplet
ground states are interchanged.Comment: 14 pages, 11 figures, Typeset with jpsj2.cl
- ā¦