932 research outputs found

    Magnetization of SrCu2(BO3)2 in ultrahigh magnetic fields up to 118 T

    Full text link
    The magnetization process of the orthogonal-dimer antiferromagnet SrCu2(BO3)2 is investigated in high magnetic fields of up to 118 T. A 1/2 plateau is clearly observed in the field range 84 to 108 T in addition to 1/8, 1/4 and 1/3 plateaux at lower fields. Using a combination of state-of-the-art numerical simulations, the main features of the high-field magnetization, a 1/2 plateau of width 24 T, a 1/3 plateau of width 34 T, and no 2/5 plateau, are shown to agree quantitatively with the Shastry-Sutherland model if the ratio of inter- to intra-dimer exchange interactions J'/J=0.63. It is further predicted that the intermediate phase between the 1/3 and 1/2 plateau is not uniform but consists of a 1/3 supersolid followed by a 2/5 supersolid and possibly a domain-wall phase, with a reentrance into the 1/3 supersolid above the 1/2 plateau.Comment: 5 pages + 10 pages supplemental materia

    Towards Identifying and closing Gaps in Assurance of autonomous Road vehicleS - a collection of Technical Notes Part 1

    Get PDF
    This report provides an introduction and overview of the Technical Topic Notes (TTNs) produced in the Towards Identifying and closing Gaps in Assurance of autonomous Road vehicleS (Tigars) project. These notes aim to support the development and evaluation of autonomous vehicles. Part 1 addresses: Assurance-overview and issues, Resilience and Safety Requirements, Open Systems Perspective and Formal Verification and Static Analysis of ML Systems. Part 2: Simulation and Dynamic Testing, Defence in Depth and Diversity, Security-Informed Safety Analysis, Standards and Guidelines

    Ultrahigh Magnetic Field Optical Study of Single-walled Carbon Nanotubes Film

    Full text link
    Excitons in Single-Walled Carbon Nanotubes (SWNTs) have emerged as an ideal candidate for exploring one-dimensional (1-D) exciton physics. Exciton states which dominate optical properties of SWNTs even at room temperature, are not clarify yet. The optical absorption spectra of aligned SWNTs films under ultra high magnetic fields up to 190 T are examined to investigate this issue. Shifting and splitting of the absorption peaks due to Aharonov-Bohm effect was observed clearly above 80 T in the configuration where the magnetic fields were applied in parallel to the alignment of SWNTs. The lowest singlet exciton state has been determined through the analysis of energy splitting of excitons by the application of magnetic fields.
    • …
    corecore