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TIGARS TOPIC NOTE 5: SIMULATION AND
DYNAMIC TESTING
Summary

Simulation has emerged as one of the most important means of assurance for
Machine Learning (ML) embedded in control systems, but there are many challenges
and areas of uncertainty surrounding its use. In this document we present a summary
of issues as well as experience gained from the TIGARS project demonstrator in the
autonomous vehicle domain.
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1 Introduction

Simulation has emerged as one of the most important means of assurance for Machine Learning (ML)
embedded in control systems, but there are many challenges and areas of uncertainty surrounding its use.
In this document we present a summary of issues as well as experience gained from the TIGARS project
demonstrator in the autonomous vehicle domain.

2 Simulation and dynamic testing

Simulation is an approach widely used and encouraged, e.g., by the NHSTA [1], to train and verify the
performance of ML used in autonomous vehicles. Simulation can be performed at many different levels of
abstraction, some of which are described below:

e Fully virtual simulation - where the ML is executed in isolation with fully electronic input data and data
capture. For example, running an image classification Convolutional Neural Network (CNNJ on a PC
with sample image file.

e Hardware in the Loop (HIL] - where the ML is run on representative hardware, however the inputs and
outputs are managed virtually or in an artificial environment. For example, putting an autonomous
vehicle inside a room with a bank of monitors and capturing decisions via data logging. Simpler cut
down versions may also be used, e.g., a sub-system in isolation but with hardware sensors.

e Real-world limited trial - where the autonomous system is run on representative hardware but in a
controlled environment, such as on a test track.

e Real-world trial - where the autonomous system is put into the public environment, with no control of
test conditions.

Simulation may require substantial computer resources to create an environment with enough fidelity to
gather meaningful results.

A serious assurance challenge is the amount of experience and testing needed in an autonomous vehicle to
gain confidence. To match a human driver fatality rate of 2 - 3 per billion miles it is estimated that “fully
autonomous vehicles would have to be driven hundreds of millions of miles and sometimes hundreds of billions
of miles to demonstrate their safety in terms of fatalities and injuries. Under even aggressive testing
assumptions, existing fleets would take tens and sometimes hundreds of years to drive these miles — an
impossible proposition if the aim is to demonstrate performance prior to releasing them for consumer use. Our
findings demonstrate that developers of this technology and third-party testers cannot simply drive their way to
safety.” [2]. This is reinforced by Koopman in [3].

Therefore, simulation without resorting to real-world trials is seen as a practical way to gain assurance
regarding the performance of an autonomous vehicle although it is an open question how his can be
combined with other assurance evidence to give sufficient confidence in the safety of the system (the overall
assurance is discussed in [4]). Additionally, only using real-world trials is not generally considered an
ethical or a responsible choice, at least not without some reasonable assurance of safe performance before
the vehicle is in contact with the general public and also for the occupants.

It should be noted that simulation discussions in this document are limited to simulation environments for
verification and reinforcement learning of ML, rather than, for example, simulations of overall traffic flow
once autonomy has been incorporated.

Table 1 below summarises the pros and cons of different combinations of virtual and real-world simulation.
In practical terms it may be desirable to use different types at different stages of ML development. This
would be dependent on the risk associated with the system, as that would inform the amount of evidence
required to demonstrate adequate safety.
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Environment ML Strengths Weaknesses
Virtual Virtual Can control and model Unrealistic input data e.g., computer
many different environment | generated environment' or modelled
options, which may be hard | sensor functionality which may not
to replicate in real world match the resolution and real-time
testing performance of a real sensor
Can create accident Extensive computer resources will be
sequences to test corner required to achieve the performance
cases without risk of required for adequate modelling and
accident collecting data e.g., in terms of
Potentially cheap and quick processing power and fast access
. memory
Can do early in lifecycle to . , .
assess performance ML may not perform this way in real life
Can monitor every aspect Hard to involve user if needed
of performance Potentially unrepresentative results
Can use for reinforcement (e.g., no feedback from bumpy surface,
learning compromise of equipment from wet
) surface, temperature changes)
Potentially strong
repeatability
Easier to detect how/where
faults occurred with
monitoring
Virtual/Artificial | On target Can control many different | Unrealistic input data - ML may be real
hardware environment options but some of the input data may not be
(Hardware In Can create accident realistic e.g. if working in a room with
Loop (HIL)) sequences with very lots of monitors
limited or no risk Computing power required may be large
Can involve end user Outputs may be more realistic but still
Gain trust in ML hardware constrained by environment (e.g., no
_ actual movement or slower/faster
PotenUal_Ly strong responses)
repeatability }
) User may not behave as they would in
Easier to detect h.ow/where real environment or may have
fault.s oc?curred with simulation sickness [5]
monitoring
Real world but | On target Input data is real and may Less control over the environment
controlled e.g., | hardware contain unanticipated

test track

events

Can get useful feedback on
performance with low risk
to third party

Can involve users if needed

Much harder to repeat results

Harder to detect how/where faults
occurred

' Consider the situation where the simulation provides conflicting and unrealistic sensor data e.g., blocky low-resolution models,
moving trees and unrealistically fast pedestrians [6]. Whilst it might be useful for the ML to identify this as invalid input data, if used
for training care will be needed not to reinforce invalid behaviour.
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Environment ML Strengths Weaknesses

Real world On target Input data is real and may No control over environment

trials hardware contain unanticipated Riskier to third parties depending on
events

mitigations in place

Can involve users if needed Hard to repeat results

Hard to detect how/where faults

occurred

Table 1: Simulation variants and their strengths and weaknesses

3 Simulation demonstrators

This section provides an overview of the simulation and dynamic testing performed on the TIGARS
Evaluation Vehicle (TEV] golf cart, with an acceleration control system containing ML. The ML used was a
version of the You Only Look Once (YOLOJ [7] CNN which has been trained to detect people and vehicles, as
well as other objects. The system under test uses a combination of distance calculations via parallax
images, LIDAR and image classification to determine speed and acceleration settings. The system
responds to other vehicles and pedestrians in its environment depending on their type(s) and distance from
the vehicle.

3.1 Purpose
The purpose of our testing was as follows:

 verification of the effectiveness of existing testing methods for systems including ML models.

e elucidation of the gaps between actual and simulation environments for testing systems including ML
models

» elucidation of the gaps between testing conventional systems (Non-Al) and systems including ML
models

The tests were performed early in the development lifecycle of the system.
3.2 Environment
Tests were conducted in the following two simulation environments:

e TEVtest room - Combination of Virtual and Artificial Environment with HIL
* Virtualized Verification into automatic Driving (ViViD] - Fully Virtual Environment

Object
Detection
Application
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Figure 1: TEV test room configuration diagram
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Figure 2: ViViD configuration diagram

3.3 TEVtest room environment

These tests were conducted using a chassis dynamo. In the chassis dynamo environment, the TEV runs
over the dynamo rollers. During the test, an environmental situation is reproduced by installing a panel of a
person or a car in front of the golf cart. Since the space in which the chassis dynamo can be used is
narrower than real life, the threshold values of the distance from the front vehicle when accelerating,
decelerating, or stopping were adjusted proportionally.

Figure 3: Chassis dynamo environment

3.4 ViVID environment

ViViD provides a fully virtual simulation environment for the TEV golf cart. Using ViViD, sensor information
can be acquired by User Datagram Protocol (UDP) communication. It can be configured so that obstacles
such as vehicles and pedestrians can be inserted into the environment, as well as failure injection within

sensor data. The tests were carried out with the TEV driving on a typical road as shown below.
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Figure 4: ViViD environment

4 Test cases and results
4.1 Test content

In order to verify whether the test methods were effective for the system including the ML model, test items
were created as follows:

e normal scenarios were created based on system design specifications
e scenarios for failure, performance limitation, and misuse were created based on the results of safety
analysis performed when the system concept was created

The created test items were further divided according to whether or not they could be tested in test room
and ViViD environments, and the tests were carried out.

4.2 Lessons learned from running the experiments
This section describes the TEV experimental results and our analysis.
4.2.1 Lessons from the ViVID environment

The system on the TEV uses comparisons of distance information from the object detection and LiDAR.
There were many issues with timing in the ViViD environment which impacted on the effectiveness of the
testing.

The LiDAR simulation software was too slow to be used at full fidelity in ViViD. As a result only part of the
LiDAR data [the front +15 degrees] was used to ensure a similar execution time as the real system. This
was justified as it had no impact on the test cases being run within the ViViD environment.

A very highly specced machine was required to run the test application and simulator together, otherwise
there were unacceptable delays sending the video output to the test application and in running the YOLO
component. Even then, there were issues providing a predictable frame rate from the simulator, since only
approximately 57 seconds of real-time data could be processed in around 1 minute. This had a cumulative
effect on the simulation.

There were further complications with variations in the execution cycle, which changed from test to test.
This meant that the tests were not repeatable. Only a rigid real-time execution of the simulator would have
solved this, something that was impractical with off the shelf software. An attempt was made to lock-step
time stamps from the LiDAR and object detection with the slowest input data, but the overall time lag
meant this was not a complete solution.

One important knock-on effect of the lack of repeatability is on regression testing. Tests cases re-run on a
changed system cannot be assumed to execute with the changed functionality as the only variant, so the
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results of regression testing would need to be closely examined to ensure the results observed are valid
and representative.

4.2.72 Results from the TEV test room environment

As the laboratory environment was small, the functionality of the software was adjusted in proportion to the
size, i.e. the distance measurements and speeds were reduced. However, this had a knock-on effect on the
overall response timing of the system which needs further analysis.

Some other issues arose as the TEV documentation did not describe all golf cart connectivity in detail, and
a trial and error approach was needed to setup the CAN communication bus and to connect the required
wiring.

To ensure that the autonomous control systems were working, the TEV was run with no object, within the
braking distance (safety) range, for the vision systems to detect. The aim was to see if TEV would
successfully accelerate to its target maximum speed and maintain that speed. The TEV did accelerate to its
planned maximum speed and maintained this speed on the chassis dynamo; this showed us that the
default planning behaviour of the TEV was working.

Then the autonomous system’s responses to a vehicle being detected ahead at various distances were
tested. Its behaviour should be adaptive, where the TEV target speed should reduce when the distance to
the vehicle in front reduces too much allowing the vehicle in front to increase the gap between them before
the TEV accelerates again to its target speed, and if the distance enters the safety region, the TEV should
brake until it comes to a full stop. In practice we found that the detection rate of the vehicle was low, and
the experiments with vehicle detection were almost impossible within the test room setup. During the
experiments, a panel was used with the back of a car printed on to it to trigger the vehicle to stop, but the
panel used had a lot of blank white space around the car [printed on the panel). This seemed to confuse
YOLO and there were many cases in which the entire panel was recognized as a “bed” instead of a car.
Occasionally, YOLO was sensitive to other extraneous items in the test environment as well (e.g., additional
equipment was identified as “fridge”). The "bed” classification is most likely due to YOLO being trained on
images with different context; for future experiments, we think removing the blank spaces or printing a car
in context (on a road) for the background would make YOLQ's detection rate more effective. However, “car”
was often also detected in the images but with a lower confidence value, so an alternative is to remove the
“"bed” classification output from YOLO (leaving the neural network weights intact but taking the second or
third result). This type of issue wasn't seen with the ViViD experiments and it shows the importance of
performing a varied testing programme to find more unexpected results.

In terms of measuring performance, we found there were discrepancies in the distance measurements
obtained when integrating the results from YOLO with the distance detection results from the RoboVision
stereo camera, and this was more noticeable at a close distance. There was also a problem with
consistency over adjacent frames, as even when the object was at a fixed, safe, distance, it was sometimes
judged to be too close and a braking instruction was sent.

Currently the present golf cart behaviour means that it cannot be made to accelerate again until it stops
completely after sending a single safety brake instruction, therefore it will always decelerate and stop, even
if the target speed has increased after the brake command was sent. This highlighted there is an issue with
the resilience specification, as a single event will cause the golf cart to spuriously brake. A proposed
solution is for the system to be updated to only react after a number of brake signals are sent consecutively.

We found that small scale laboratory experiments were not easy and encountered problems we did not
expect. For example, after scaling the parameters of the tests due to the small amount of laboratory space
available, the TEV then experienced large variations in the acquired distance from the golf cart vision
sensors. The sensors had had relatively high accuracy when detecting objects at a distance originally
assumed in the TEV specification. However, as it is complex and expensive to prepare a testing environment
that is very similar to the actual deployment environment (e.g., test tracks or large scale experiments) a
‘good” simulator may be better suited in some cases and was still felt to provide value.
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Another issue found was a case in which an obstacle in the blind spot range of the camera could not be
detected by the LiDAR, or was detected with low distance accuracy. The LiDAR is part of a safety monitor
for the TEV, identifying items in the camera’s blind spot and overriding if safety distance is breached. To
reduce detection issues in the test room, the installed obstacle was moved from its initial position so that
the LiDAR could detect it and send the brake signal. However our analysis of LiDAR data log showed the
TEV should have stopped with much earlier timing than it did in the tests, and so further to determine
analysis potential causes of the issue is required.

It should be noted that the problems “detection rate of vehicle is low”, “cannot accelerate again after
sending a brake instruction”, and “cannot detect obstacles in the blind spot range of the camera” did not
occur in the ViViD environments and only became apparent in the lab testing. This highlighted the
importance of performing small scale lab testing as part of the testing trials. These were not problems with
the control algorithm (which was the focus of the ViViD testing) but instead were differences in the assumed
environment and behaviour from the actual behaviour and supported environment of the COTS equipment.

4.2.3 Common findings

Understanding the correctness of the results was greatly improved by drawing the detection range on the
input images. This was true of both the ViViD and chassis dynamo testing.

Both sets of tests highlighted problems with the parallax information being provided by the object detection
software which had a large amount of dispersion, particularly with close objects and depending on how
many objects were detected. This indicated improvements were needed to the distance calculation
algorithms.

Conclusions and recommendations

Simulation has emerged as one of the most important means of assurance for ML embedded in control
systems, but there are many challenges and areas of uncertainty surrounding its use. Different
combinations of virtual and real-world simulations can be used and, in practical terms, it may be desirable
to use different types at different stages of ML development. This would be dependent on the risk
associated with the system, as that would inform the amount of evidence required to demonstrate adequate
safety. The Tigars case study provides some insights into the pragmatic issues in using simulation on real
projects in which an experimental vehicle was being built from off the shelf components integrated with
bespoke software, by a sub-system developer.

The simulation studies on the project uncovered a lot of issues, many of which were unrelated to the ML but
instead undermined confidence in the test environment and equipment. Hence, even if the test results are
as expected it is not clear if we can trust them. Some of the findings are not new, for example, uncertainty
in COTS equipment is a known issue, but this along with the combination of unproven ML technology with
unproven testing methodology and equipment means establishing a compelling assurance case is
additionally challenging.

The following recommendations are made from this work:

e Simulation can have many roles in the development and assurance lifecycle: the roles of the different
simulation variants should be specified and justified.

e Confidence in the simulation environment needs to be established. In other words, how much we can
trust it, and how much do we need to trust it. This will include confidence in any simulation software (in
the quality of its construction], in the fidelity of the sensor data compared to real-life, and hence our
trust in the results produced (both positive and negative). Although many tools are available off the shelf
to support simulation, in our experience, they did not perform as anticipated (ViViD had many timing
issues) and they may not have been developed to the quality traditionally expected for safety critical
systems testing.

e Adjustments in system behaviour may be needed to accommodate the simulation environment and
these will need to be justified so that test evidence can be used in the overall assurance cases.

e Additional findings should be sought from the test cases. The HIL testing uncovered an undocumented
feature of the golf cart where it would come to a complete halt rather than allow a controlled slow down
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This TIGARS Topic Note discusses defence in depth and diversity for autonomous
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1 Introduction

This TIGARS Topic Paper discusses defence in depth and diversity for autonomous vehicles. We provide
background on diversity and some guidance on the deployment of the use of defence in depth and diversity
for these types of systems based on the case studies performed during the TIGARS project. The key
message from a policy point and system/risk owner’s point of view is that diversity is important and should
be introduced systematically and explicitly in the system and development lifecycle. For the developer and
system architect, there are many options to consider for the ML component including the use of real time
ensembles, diverse training sets and different tool chains.

2 Defence in depth and diversity

Defence in depth and diversity are fundamental to achieving high levels of safety within complex systems.
Diversity' is a key concept and diverse redundancy is needed to counter common cause failures and
epistemic uncertainties. It is a sound and widely used design principle in safety critical applications. Lack of
diversity was a key factor in the 2003 North American power blackout as non-diverse backup systems failed
in the same way as the primary systems (p.60 [1]).

The key factor, which determines how beneficial “design diversity” is, is the failure correlation between
“diverse” components. Ideally, when one opts for “design diversity” one hopes that simultaneous channel
failures either do not occur at all or, if they do, they are rare. A number of studies, e.g. [4][9] with non-ML
based software demonstrated that the gains from design diversity may be significant but are usually
significantly lower than one may hope under the assumption that diverse components would fail
(statistically) independently.

Some experimental results on the correlation of failures are shown in Figure 1 and Figure 2. Figure 1 is
from a seminal Nasa funded experiment (data from Knight (1986]) that shows the improvement in the
probability of failure of missile detection algorithm as the mean performance improves. The other (Figure 2]
is from a software competition with many thousands of entrants and shows the reliability improvement of a
diverse pair, relative to a single version (from Meulen (2008)). The horizontal axis shows the average
probability of failure on demand of the pool from which both programs are selected. The vertical axis shows
the reliability improvement from having a second algorithm.

The main message from these experiments is that on average one gets one or two orders of magnitude
improvement in the probability of failure on demand by deploying diverse systems. One explanation for this
is that independent designers and developers make similar mistakes because of the inherent difficulty of
the problem that the algorithm is solving. The presence of these correlations and the non-independence of
failures is a robust result, replicated across experiments sponsored by Nasa, the nuclear industry and
others.

10r diverse redundancy, “The presence of two or more systems or components to perform an identified
function, where the systems or components have different attributes so as to reduce the possibility of
common cause failure, including common mode failure”. Diversity could result in different development
lifecycles, different organisations, and different implementation technologies. The term “redundancy”
denotes replicated, sometimes identical, systems or structures e.g. in protecting against fire by having
identical systems located in different places.
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Defence in depth in the autonomous vehicle context can take a variety of forms - from hardening a
particular functional block (e.g. by deploying design diversity), to building a resilient architecture optimised
to detect a failure, confine its impact and recover from failure fast. In addition diversity can be deployed
within design and V&V teams, between development and assessment organisations, in tool chains to try
and avoid problems of complex tool reliability and in V&V techniques [5].

The principles of how to deploy defence in depth are well-known and discussed widely in safety and security
related standards and text books ([6][7][8]). For autonomous systems the challenge is how to deploy
defence in depth with ML components. Such ML components may be used as “sensors” in a safety channel
(e.g. to detect obstacles on the road] and also to implement an essential part of the functionality (e.g. in
journey planners).

Diversity studies have been conducted with ML software, too. For instance, a number of studies in the late
1990s examined the effectiveness of design diversity with ML used for character recognition. In these
works, e.g. [11], the authors made two observations:

1. The effectiveness of diversity is affected not only by whether diverse channels fail simultaneously,
but also whether the failures are identical or not.
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2. Diversity between channels can be promoted by carefully planning how the channels are trained,
although the practical advice provided by the authors on how this can be done efficiently is very
limited.

3 Defence in depth and diversity in TIGARS

The TIGARS project investigated the gaps and challenges for the assurance of autonomous road vehicles as
awhole. Table 1 shows an extract from the gaps and challenges summary table [12] for defence in depth
and diversity.

Gaps and Topic Project response
challenges area

Integration with Understanding how diversity and defence Evaluate probabilistic models of

defence in depth in depth can reduce the trust needed in resilience and defence in depth in

and diversity specific ML components in the context of the context of ML-based systems
ML based systems. and the assurance case.

Investigate the use of defence in
depth and diversity in ML
components and within the system
architecture of RAS.

Table 1: Defence in depth and diversity: Gaps and Challenges

TIGARS used two demonstrator systems for the defence in depth and diversity studies. The first is the
TIGARS Experimental Vehicle (TEV), which is a modified Yamaha golf cart and has a use case of being a taxi
on private property in which obstacle detection and adaptive cruise control are carried out by the installed
autonomous systems. Figure 3 shows the physical golf cart after the installation of LIDAR (Light Imaging,
Detection, And Ranging) and RoboVision camera test equipment. Secondly, Adelard and Nagoya have
acquired Donkey car autonomous driving vehicles [13]. The Donkey car consists of the body of a Radio
Control (RC) car, including motor and servo units, controlled by a Raspberry Pi computer and the Donkey
car autonomous driving software (an open source python package using TensorFlow [14]).

3.1 Defence in depth and diversity studies on the TEV

The TEV has a typical Autonomous Vehicle (AV) architecture which we used to investigate some options for
deploying defence in depth that are known to have been beneficial in other domains, e.g. sensors,
processing information, algorithms etc. However, the assessment of the effectiveness of defence in depth is
application specific and crucially depends on the correlation of failures between the diverse layers of
defence.

The UML component diagram shown in Figure 3 captures a fragment of an architecture with ML
components derived from the real architecture of the “golf car” (TEV], one of the case studies used in the
TIGARS project.
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Figure 3: Fragment of TEV architecture

To improve reliability, both functions are implemented using “diverse” components (symmetric diversity);
thus eliminating one type of common cause failure. Diversity in object recognition could be achieved by
deploying two implementations of a CNN; two “functionally diverse” components are used for the distance
measurement function too, one relying on the stereo camera as a sensor and the second on a LIDAR.

However, the two functions are clearly related (each of the channels implements the same functionality or
the functionality of the channels is very similar), thus the outcomes from the two functions must be
consistent: if objects are detected, the distance measurement should return a plausible value; if no objects
are detected, the distance measurement function should return no value. In case of a disagreement
between the channels the decision on which of the channels should be trusted is taken by an adjudicator,
e.g. majority voting.

This is not possible in the TEV unless an additional channel is added or one of the two channels is trusted
more than the other and the second channel is advisory [weakening the benefits of the diversity but still
providing a checker/monitor). The TEV trusted the LIDAR distance information more as long as the object
detection channels detected a vehicle and the stereo camera’s distance information was used as a checker.
Assessing the effectiveness of such an arrangement would need a detailed analysis of the failure
correlation between the two channels: the effectiveness would only be undermined if there were
circumstances in which the stereo camera would produce correct measurements while the LIDAR-based
measurement would produce incorrect output. Less common examples of asymmetric systems, e.g. the
LIDAR being used as a checker of an object recognition system based on a stereo camera, are not covered
by [15], but the model can be refined to cover the specifics of the TIGARS architecture.

3.2 Neural network ensembles

Neural network ensembles (NNE) adopt “software design diversity” in neural networks. An NNE uses a
finite number of individual neural networks for the same learning problem, and the final output is jointly
decided by all the outputs of these individuals via an adjudicator.

Diversity is sought by:

1. diversifying the training data
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